
Recent economic studies for Wind-Diesel in the Northwest Territories

Jean-Paul Pinard, P.Eng., PhD.

Outline

- Recent Canada-wide studies
- Beaufort Sea region wind economic studies.
- Note on climate change

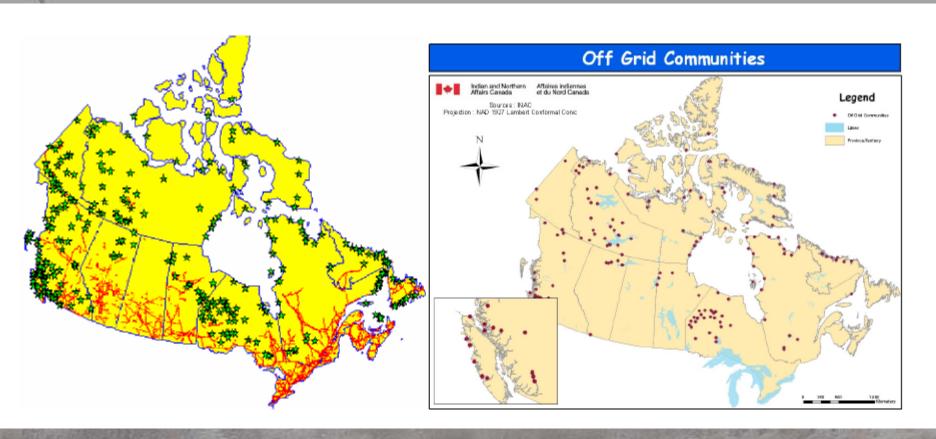
Recent Canada-Wide Study

 December 2007 study for CanWEA, by Tim Weis and John Maissan.

 Found that a target of 40 MW could be developed for mines and large communities.

 24 projects average size of 500 kW totalling 12 MW are also achievable.

Assessing the Potential Uptake for a Remote Community Wind Incentive Program in Canada


Final Report

Tim Wels, P.Eng John Malssan, P.Eng

December 2007

Recent Canada-Wide Study (cont'd)

There are about 80 remote communities in Canada that may have the potential for wind development.

Beaufort Sea Studies, NWT

- Recent studies were completed for Ulukhaktok, Paulatuk, Sachs Harbour, and Tuktoyaktuk.
- The following are a summary of the results of these studies.

<u>Tuktoyaktuk</u>

- Long-term mean wind speed of 5.3 m/s at 37 m AGL
- Diesel fuel: \$0.40 per kWh or \$1.48 per litre (3.7 kWh per litre)
- Cost of capital 8.4%

•

- Capital cost: \$1,607,000; wind energy cost \$0.64 to \$0.66 per kWh
- Required capital subsidy: \$755,173 (equivalent to about \$2,905 per kW of capacity)
- Required per kWh subsidy: \$0.24 to \$0.26 per kWh (\$76,560 to \$82,940 per year)
- Based on the Tuktoyaktuk draft technical business plan (4 EW50 wind turbines).

<u>Paulatuk</u>

- Long-term mean wind speed of 5.6 m/s at 37 m AGL
- diesel fuel: \$1.50 per litre or \$0.429 per kWh (3.5 kWh per litre).
- Based on 8% cost of capital, medium operating cost, and

- Capital cost \$534,000; wind energy cost \$0.772 per kWh
- Required capital subsidy: \$304,525
- Required per kWh subsidy: 0.772 \$0.429 = \$0.343 per kWh
 (\$30,256 per year)
- The project is one EW50 wind turbine.

Paulatuk (cont'd)

Sachs Harbour

- Long-term mean wind speed of 6.6 m/s at 37 m AGL
- fuel costing \$1.50 per litre or \$0.469 per kWh (3.2 kWh per litre).
- The project is a one EW50 wind turbine.
- Based on 8% cost of capital, medium operating cost, and diesel
- Original site: replacement turbine and 25-m tower, capital cost \$382,000; wind energy cost \$0.464 per kWh
- Required capital subsidy: nil, Required per kWh subsidy! nil

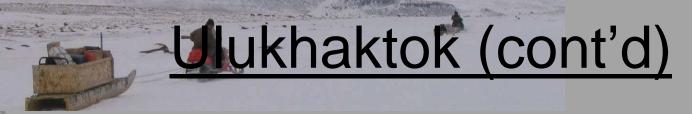
- Original site: new turbine with 37-m tower, capital cost \$464,500;
 wind energy cost \$0.464 per kWh
- Required capital subsidy: nil, Required per kWh subsidy: nil

Sachs Harbour (cont'd)

- Long-term mean wind speed of 6.6 m/s at 37 m AGL
- fuel costing \$1.50 per litre or \$0.469 per kWh (3.2 kWh per litre).
- The project is a one EW50 wind turbine.
- Based on 8% cost of capital, medium operating cost, and diesel

Proposed alternate site, on east loop road, capital cost \$704,500; wind energy cost \$0.645 per kWh

- Required capital subsidy: \$232,960
- Required per kWh subsidy; \$0.645 \$0.469 = \$0.176 per kWh
 (\$23,209 per year)


Sachs Harbour (cont'd)

Ulukhaktok (cont'd)

- Diesel fuel: \$1.50 per litre or \$0.417 per kWh (3.6 kWh per litre).
- The project is two EW50 wind turbines.
- Based on 8% cost of capital, medium operating cost, and
- East Ridge: capital cost \$2,339,000; wind energy cost \$0.995 / kWh
- Required capital subsidy: \$1,534,260
- Required per kWh subsidy: \$0.995 \$0.417 = \$0.578 per kWh
 (\$152,439 per year)
- Limestone Ridge: capital cost \$1.4M; wind energy cost \$0.903 / kWh
- Required capital subsidy: = \$907,270
- Required per kWh subsidy: \$0.903 \$0.417 = \$0.486 per kWh
 (\$90,069 per year)

Ulukhaktok (cont'd)

- Based on 8% cost of capital, medium operating cost, and diesel fuel costing \$1.50 per litre or \$0.417 per kWh (3.6 kWh per litre). The project is two EW50 wind turbines.
- Three Hills: capital cost \$1.25M; wind energy cost \$0.678 / kWh
- Required capital subsidy: \$575,900
- Required per kWh subsidy: \$0.678 \$0.417 = \$0.261 per kWh (\$59,533 per year)
- Power Plant Hill: capital cost \$1.1M; wind energy cost \$0.781 / kWh
- Required capital subsidy: \$647,400
- Required per kWh subsidy: \$0.781 \$0.417 = \$0.364 (\$64,216 per year)

Summary of Wind Energy Studies in NWT

Northwest Territories

Wind monitoring and completed wind prefeasibility studies to date

		Annual mean	Peak	Proposed	Installed	Operating	Avoided	Subsidy
1		wind speed	load	size	cost	cost	diesel	needed
1	Pop.	m/s @30m	kW	kW	\$/kW	\$/kWh	cost	
Norman Wells (2008)	849	6.5*	1640	300	\$ 8,800	\$ 0.47	\$ 0.28	\$ 0.19
\.				500	\$ 7,000	\$ 0.40	\$ 0.28	\$ 0.12
Tuktoyaktuk (2008)	967	5.2	851	260	\$ 5,300	\$ 0.55	\$ 0.29	\$ 0.26
	50			300	\$ 5,600	\$ 0.49	\$ 0.29	\$ 0.20
				500	\$ 5,000	\$ 0.47	\$ 0.29	\$ 0.18
Yellowknife (2008)	18,695	4.8 (37m)	Hydro	300	\$ 5,200	\$ 0.62	\$ 0.28	\$ 0.34
	/	5.5 (80m)	(diesel)	1500	\$ 3,300	\$ 0.28	\$ 0.28	\$ -
Colville Lake (2008)	125	4.8*	103	30	\$ 9,400	\$ 1.28	\$ 0.43	\$ 0.85
Gameti (2008)	301	4.5*	214	120	\$15,000	>1.30	\$ 0.31	> \$ 1.00
	出る。						- Della Maria	· · · · · · · · · · · · · · · · · · ·
Ulukhaktok (2009)	416	6.5	469	130	\$ 9,600	\$ 0.68	\$ 0.42	\$ 0.26
Paulatuk (2009)	321	5.6	254	65	\$ 8,200	\$ 0.77	\$ 0.43	\$ 0.34
Sachs Harbour (2009)	123	6.6	209	65	\$ 5,900	0.46	\$ 0.46	0
		6.6		65	\$10,800	0.65	\$ 0.46	0.18

^{*} Estimates based on Eniviroment Canada weather data.

A note about Climate change affecting Wind Energy Climate

As the climate changes there are indications that the winds are increasing too.

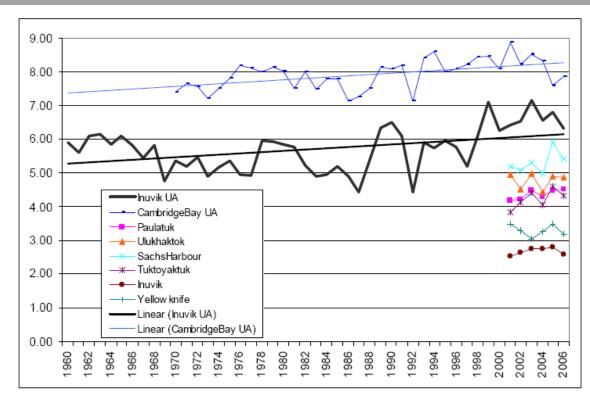


Figure 2: Time series of annual mean wind speed at 500 m above sea level (ASL) over Inuvik (58 m ASL) and Cambridge Bay (25 m ASL) and the airport stations in six communities. The mean wind speed at 500 m ASL for the period is 5.7 and 7.8 m/s in Inuvik and Cambridge Bay respectively. The rate of wind speed increase is about 0.2 m/s per decade. The acronym UA is short for upper-air or weather balloon measurements.

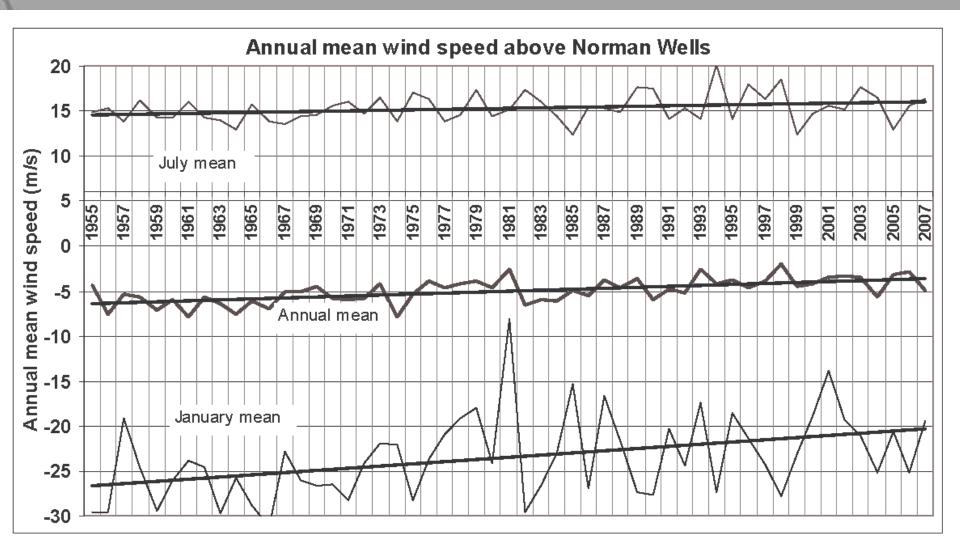
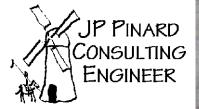



Figure 11: Time series of annual mean air temperature above the Norman Wells upper-air station at comparable heights (400 m ASL) to Kee Scarp.

Acknowledge:

- Aurora Research Institute, Staff, the many wind techs in the communities.
- •Environment & Natural Resource, GNWT
- John Maissan, Leading Edge Projects

Thank You!

