Taking Charge

How Ontario can create jobs and benefits in the electric vehicle economy

Cedric Smith, Saeed Kaddoura and Morrigan Simpson-Marran

August 2021
Taking Charge

How Ontario can create jobs and benefits in the electric vehicle economy

Cedric Smith, Saeed Kaddoura and Morrigan Simpson-Marran

August 2021

©2021 The Pembina Institute
All rights reserved. Permission is granted to reproduce all or part of this publication for non-commercial purposes, as long as you cite the source.

About the Pembina Institute

The Pembina Institute is a national non-partisan think tank that advocates for strong, effective policies to support Canada’s clean energy transition. We employ multi-faceted and highly collaborative approaches to change. Producing credible, evidence-based research and analysis, we consult directly with organizations to design and implement clean energy solutions, and convene diverse sets of stakeholders to identify and move toward common solutions.

Donate to the Pembina Institute

Together, we can lead Canada’s transition to clean energy. Your gift to the Pembina Institute directly supports environmental education and innovative research that advances understanding and action on critical energy and environmental issues.

pembina.org/donate

Acknowledgements

We would like to thank Suzanne Goldberg for her input in our research for this report.
Contents

Executive summary .. 1
1. Introduction ... 4
2. State of play .. 8
 2.1 Ontario's auto sector is in decline .. 8
 2.2 Ontario's EV supply chain is well positioned for growth ... 9
 2.3 Ontario's EV market share lags leading jurisdictions ... 15
3. Overview of EV policies .. 20
 3.1 Ontario's policies .. 20
 3.2 Federal demand-side policies .. 22
 3.3 International practices ... 23
4. Economic benefits of growing Ontario's EV market ... 25
 4.1 The importance of a domestic EV market ... 25
 4.2 Automobile supply chain and production ... 27
 4.3 EV infrastructure and services ... 32
5. Policy recommendations .. 35
 5.1 Establish an Ontario Transportation Electrification Council and roadmap ... 35
 5.2 Build consumer awareness of EV cost savings .. 36
 5.3 Mobilize private capital into EV infrastructure .. 37
 5.4 Ensure Ontario's transportation infrastructure system is ready for EVs .. 39
 5.5 Help Ontarians save on electric vehicle and private charging purchases ... 44
6. Conclusion ... 47

Appendix A. Methodology: Economics and jobs potential .. 48
Appendix B. Policy recommendation summary .. 52

List of Figures

Figure 1. Ontario's declining auto sector, 2001-2020 ... 9
Figure 2. Electric vehicle supply chain ... 10
Figure 3. Ontario's vehicle market, 2020 .. 15
Figure 4. Electric vehicle market share, selected jurisdictions, 2020 ... 17

List of Tables

Table 1. Share of Canada's ZEV sales and infrastructure by Ontario, Quebec and British Columbia 18
Table 2. Potential jobs and economic benefits from the increased production and use of EVs and EV chargers in Ontario ... 28
Table 3. EV manufacturing jobs and economic benefits (2035) .. 49
Table 4. EV charger manufacturing jobs and economic benefits (2035) .. 51
Table 5. EV charger installation jobs and economic benefits (2035) ... 51
Table 6. Policy recommendations — summary .. 52
Executive summary

With 90% of the largest global automakers committing to increase electric vehicle (EV) sales and offers, Ontario will soon see the ripple effects of over $4 billion in recent investments into EV production capacity in Oakville, Windsor, and Ingersoll. The province’s EV supply chain is also positioned to grow due to significant production of cobalt, nickel, and copper, as well as aluminum processing and a nascent battery manufacturing and recycling sector.

These latest investments by government and automakers will undoubtedly help ignite Ontario’s EV market, and will potentially bring the province closer to the Canadian average EV market share of 3.5% (from its 2020 provincial share of 1.75%).

But much more is needed beyond seed funding if Ontario is to be economically competitive with the United States, Europe, and China, each of which have secured sizeable shares of the EV manufacturing supply chain over the past 10 years. In 2020, governments around the world invested considerable financial resources in electric vehicles, dedicating US$14 billion in financial incentives alone.

The first to enter the EV market are poised to benefit the most. Analysis by the International Council on Clean Transportation shows that approximately 80% of electric vehicles produced are sold in the same region where they are manufactured. These jurisdictions are ready to benefit from the economic activity that comes from EV production and consumer spending on vehicle purchases and associated services and infrastructure. As a result of the coronavirus pandemic, the impetus for EV supply chain localization increased among auto-sector stakeholders as investors worried about supply-chain sustainability and a reliance on China for battery manufacturing. Currently, most battery production and EV sales occur outside of Canada, predominantly in China, Europe, the U.S., Japan, and South Korea.

Nevertheless, there remains significant opportunity for Ontario to continue to capitalize on the economic growth potential in EV development and production. At the global level, automakers have been projected to invest around $300 billion over the next five to 10 years. But what are the potential benefits of a growing EV sector for Ontarians and businesses?

In this paper, we present the economic and job-creation potential of accelerating electrification in Ontario’s light-duty vehicle market, from manufacturing to
maintenance to the development and installation of charging-infrastructure. Our economic analysis considers the Government of Canada’s announcement in June 2021 of a mandatory target for all new light-duty car and passenger-truck sales to be zero-emission by 2035. If Ontario expands the light-duty electric vehicle market to 100% of total new light-duty vehicle sales by 2035, the potential direct, indirect and induced economic benefits associated with EV manufacturing are estimated to reach more than 24,200 jobs and over $3.4 billion in gross domestic product by 2035. The additional direct, indirect and induced economic and job benefits associated with EV charging are estimated to reach 23,100 or more jobs and approximately $2.7 billion in GDP. This analysis does not consider the economic growth potential of a low-carbon hydrogen and fuel-cell sector, nor does it examine the potential effects of growing the electric medium- and heavy-duty vehicle sector in Ontario.

Ontario is well positioned to increase EV supply, and can capitalize on this by developing a comprehensive framework for electrification that includes policies and strategies for direct investment and for attracting private-sector capital to build supply and infrastructure and to accelerate the mass adoption of electric vehicles. In doing so, Ontarians and businesses can realize even greater economic benefits as well as boost job creation both in the near and long term.

Leaders in EV production, such as China, Japan, South Korea, the United States, and Europe, deploy a mix of policies and incentives to accelerate supply and demand. We recommend the following actions:

1. **Establish an Ontario Transportation Electrification Council** to lay out a long-term, co-ordinated and holistic electrification strategy for the province. This strategy should include policies for securing jobs and economic benefits from a growing EV market, with co-operation from departments responsible for transportation, economic development, energy, natural resources, and environment as well as labour, training, and skills development.

2. **Build consumer awareness** about the potential operational savings from driving EVs over time to address consumer concerns about the higher purchase cost of an EV.

3. **Mobilize private capital in ZEV infrastructure.** Ontario should issue a green bond to finance infrastructure for electric vehicles.

4. **Increase widespread availability of EV-charging infrastructure.** Amend the Ontario Building Code to require new residential buildings to be EV-ready.
5. **Fill gaps in public charging station availability** to address range anxiety of EV drivers. Invest in public charging stations, including Level 2 chargers and DC fast chargers.

6. **Help Ontarians save on electric vehicle and private charging purchases** by introducing a medium-term financial incentive program to reduce the difference in purchase price between electric vehicles and comparable internal combustion engine vehicles. Subsidies can be available to both businesses and consumers, with program design considerations to increase EV accessibility to lower-income households and small- and medium-sized enterprises. A financial incentive program should also be created to support and encourage the purchase of private EV chargers, with funding streams for homes, workplaces, and fleets.

Through decisive and targeted action, Ontario can take charge, reimagine its automotive industry, and be a competitive player in a rapidly shifting global automotive sector that is trending towards electrification.
1. Introduction

Electric vehicles have exploded in consumer popularity in recent years. EVs produce significantly lower life cycle greenhouse gas emissions than traditional internal combustion engine (ICE) vehicles\(^1\) and, in general, do not release smog-forming pollutants, which impact human health.\(^2\)

What is an electric vehicle?

An electric vehicle is a vehicle with the potential to produce **zero tailpipe emissions**. This includes **battery electric vehicles (BEVs)**, which use battery packs that contain electric energy to power a motor;\(^3\) **plug-in hybrid electric vehicles (PHEVs)**, which use batteries to power a motor as well as diesel or gasoline to power a separate propulsion source such as an internal combustion engine (ICE);\(^4\) and **fuel-cell electric vehicles (FCEVs)**, which are powered by hydrogen fuel cells that use hydrogen (a colorless and tasteless substance and the universe’s most abundant element) to produce electricity.\(^5,6,7\)

A growing number of consumers are choosing to purchase electric vehicles. Between 2014 and 2020 the global stock of electric cars increased from under one million to more

\(^3\) Alternative Fuels Data Center, “All-Electric Vehicles.” https://afd.c.energy.gov/vehicles/electric_basics_ev.html

\(^4\) Alternative Fuels Data Center, “Plug-In Hybrid Electric Vehicles.” https://afd.c.energy.gov/vehicles/electric_basics_phev.html

than 10 million.8,9 Similar growth has occurred in Canada: electric vehicle sales increased by more than 900\% during the same period.10 In 2019, over 50\% of Canadians were strongly considering going electric in the purchase of their next car, motivated by concerns about air pollution, the climate crisis, and fuel costs.11 This increased to nearly two-thirds by late 2020.12 In Ontario, electric vehicle sales increased from under 250 vehicles in 2011 to more than 10,000 in 2020.15

In Europe, Asia, and North America, government policies targeted at tackling the health and global-warming implications of transport-sector emissions have been critical to the proliferation of EVs.14 But there are also significant economic and job creation opportunities in this transition to a new transportation and energy system. As of 2021, more than 20 countries had implemented ICE car bans or established 100\% electrification targets.15 Jurisdictions have also established mandates for the sale of EVs. In 2020, governments world-wide collectively spent US$14 billion on financial incentives to promote the purchase of electric cars.16 Eighteen of the 20 largest original equipment manufacturers have announced commitments to increase EV sales and offers.17 General Motors, for example, pledged to sell only electric vehicles as of 2035.18

\begin{itemize}
\item 13 Statistics Canada, “New motor vehicle registrations,” spreadsheet, June 2021.
\item 14 \textit{Global EV Outlook 2020}, 15, 86.
\item 16 \textit{Global EV Outlook 2021}, 21.
\item 17 As of April 2021. Source: \textit{Global EV Outlook 2021}, 25.
\end{itemize}
Notable economic benefits can be realized, not only in auto manufacturing and assembly, but also in installation of electric vehicle charging and associated operational services, clean-energy generation, and battery material development and recycling. The International Energy Agency forecasts annual global demand for EV battery capacity to increase from 0.17 terawatt-hours to 1.5 in 2050\(^\text{19}\) and for the demand for EV battery materials — including cobalt, lithium, manganese, and nickel — to increase between 700% and 1,300% in the same timeframe.\(^\text{20}\)

The Government of Canada recently made a number of commitments aimed at unlocking the economic benefits of an electric vehicle transition. The 2020 *A Healthy Environment and a Healthy Economy* plan proposes to support the development of the battery supply chain and to attract investments in the manufacturing of zero-emissions transportation products.\(^\text{21}\) In February 2021, Canada and the United States announced a “Roadmap for a Renewed U.S. — Canada Partnership” and called for collaboration “to build the necessary supply chains to make Canada and the United States global leaders in all aspects of battery development and production.”\(^\text{22}\) More recently, in June 2021, the Government of Canada announced a new target for 100% of new light-duty car and passenger truck sales to be zero-emission as of 2035.\(^\text{23}\)

As a way of advancing the province’s strategy for the auto industry, *Driving Prosperity*,\(^\text{24}\) the Ontario government made a financial commitment to support automaker investment in EV manufacturing, directing nearly $300 million toward the retooling of Ford of Canada’s Oakville Assembly Complex “into a global hub for battery electric vehicle production,”\(^\text{25}\) and included an investment of over $50 million in the 2021

\(^\text{19}\) *Global EV Outlook 2020*, 177.

\(^\text{20}\) *Global EV Outlook 2020*, 179.

budget for an Ontario Vehicle Innovation Network to increase the development of technologies such as EVs.26,27

While these are good first steps, additional actions must be taken in order to grow Ontario’s EV market beyond its current market share of 1.75%, and to be more in line with the Canadian average (3.5%) and with other leading jurisdictions including California (8%)28, Iceland (52%) and Norway (75%).29

The purpose of this paper is to demonstrate that growing Ontario’s EV market can result in significant direct, indirect and induced economic benefits and job creation for Ontarians in areas that include electric-vehicle manufacturing, the associated battery supply chain, EV infrastructure, and EV operations.

“New motor vehicle registrations.”
2. State of play

2.1 Ontario’s auto sector is in decline

Ontario’s auto sector is an important driver of the province’s economy and accounts for 100% of Canada’s light-vehicle production.\(^{30}\)

As of December 2020, the province was home to five original equipment manufacturers: Stellantis, with locations in Brampton and Windsor; Ford of Canada, based in Oakville; General Motors in Ingersoll; Honda Canada in Alliston; and Toyota, located in Cambridge and Woodstock.\(^{31}\)

Ontario’s auto sector has been estimated to account for over 100,000 direct jobs, thousands of additional spin-off jobs, and a supply chain that includes more than 700 parts firms and over 500 tool, die and mold makers. In 2017, the province ranked as the number one auto-producing area in North America, with an output of nearly 2.2 million vehicles.\(^{32}\)

The 2017 ranking, however, masks significant declines in Ontario’s auto sector. Over the past two decades, nearly 47,000 jobs have been lost and auto sector GDP has declined more than 30% (Figure 1). Over the same period, Canada’s motor vehicle production dropped from over 2.5 million vehicles (4.5% global share) to about 1.4 million (1.8% of global share),\(^{33}\) with a net loss of five vehicle-assembly plants.\(^{34}\)

\(^{32}\) *Driving Prosperity*, 5.

\(^{34}\) Ben Sharpe, Nic Lutsey, Cedric Smith and Carolyn Kim, *Power Play: Canada’s role in the electric vehicle transition* (Pembina Institute and ICCT, 2020), 33. https://www.pembina.org/pub/power-play
2.2 Ontario’s EV supply chain is well positioned for growth

Until recently, Ontario’s electric vehicle production lagged behind international competitors. In 2018, the Chrysler Pacifica plug-in hybrid, produced in Brampton and Windsor, was the only light-duty electric vehicle manufactured in Canada, and represented approximately 0.4% of Canada’s production. This level of EV production was significantly below that of international competitors with similar levels of total vehicle production, including the United Kingdom (3.2%) and France (2.6%) as well as

“2020 Production Statistics.”
“2001 Production Statistics.”

36 Power Play: Canada’s role in the electric vehicle transition, 4, 29.
leading vehicle manufacturing jurisdictions such as the U.S. (3.1%) and China (4.2%). It was about 80% below the global average of 2.3%.37

What makes up the EV supply chain?

Electric vehicle manufacturing is the most visible part of a broader supply chain, which includes the exploration for, and mining of, minerals, the processing of minerals, the manufacturing of EV components — particularly battery components — and the re-use and recycling of EV components.38 Increased electric vehicle manufacturing in Ontario can provide benefits across a wide array of industries.

Figure 2. Electric vehicle supply chain

Production facilities

A 2020 report by the International Council on Clean Transportation and the Pembina Institute concluded that Canada must quickly accelerate development of its electric vehicle production and supply chain so as not to lose an important sector of its economy. There are indications that Canada is missing out on automaker EV investments, with the report noting that Canada was not explicitly identified as one of the markets that would see the $300 billion worth of planned automaker EV investments worldwide tallied at the time of the report.39,40 Recently, however, there have been positive developments, as automakers have announced investments in electric-vehicle production in the province.

37 Power Play: Canada’s role in the electric vehicle transition, 4-5.
38 A Healthy Environment and a Healthy Economy, 43.
39 Power Play: Canada’s role in the electric vehicle transition, 28, 33.
In September 2020, an investment of $1.8 billion to retool Ford of Canada’s Oakville Assembly Complex to produce battery electric vehicles (BEV) was announced.\(^{41}\) This was supported by $590 million from the provincial and federal governments.\(^{42}\) It is expected that production will begin in 2025\(^ {43}\) and that the initiative will “help secure 5,400 well-paying jobs across Ford’s production workforce in Canada.”\(^ {44}\)

In October 2020, Unifor members ratified a $1.5-billion agreement with Fiat Chrysler to produce BEVs and plug-in hybrid electric vehicles at the Windsor Assembly Plant.\(^ {45}\) It is expected that this agreement will help secure 2,000 jobs in Windsor\(^ {46}\) with, at minimum, one new model as of 2025.\(^ {47}\) While not a direct support for EV manufacturing, the Ontario government provided $210,000 to assist workers recently laid off by Fiat Chrysler. This has been framed as a bridge to future production at the plant.\(^ {48}\)

Most recently, in January 2021, Unifor members ratified an agreement with General Motors for $1 billion to produce electric delivery vans at the Ingersoll plant. The Ingersoll plant currently employs nearly 2,000 Unifor Local 88 workers.\(^ {49}\) According to General Motors, this will represent the first large-scale electric commercial vehicle production in Canada.\(^ {50}\)

\(^{41}\) “Historic Ford Canada Investment Transforming Ontario into Global Electric Vehicle Manufacturing Hub.”
\(^{46}\) “Unifor members ratify new FCA contract that delivers new jobs and investment.”
\(^{47}\) “Deal with Fiat Chrysler secures $1.5 billion electric vehicle investment.”
Electric vehicle metals and minerals

Canada is a key global player when it comes to reserves and production of minerals and metals used in electric vehicles. The country ranks among the top-10 producers of graphite, nickel, cobalt, and aluminum and has one of the largest identified lithium reserves.\(^{51}\) It also has significant resources and reserves of rare earth elements, estimated to be over 15 million tonnes.\(^{52}\)

Much of this production is located in Ontario. The province accounts for more than 20% of Canada’s cobalt production, over 25% of its copper production, and nearly 40% of its nickel production. While Ontario does not currently produce graphite,\(^{53}\) it is home to over 40% of Canadian businesses engaged in the extraction of alumina and the production and processing of aluminum.\(^{54,55}\)

Ontario has existing mining operations for nickel, cobalt, and copper, with underground and concentrator facilities including Nickel Rim South, Strathcona and Kidd Creek.\(^{56}\)

Mining companies with a presence in Ontario are working with government, original equipment manufacturers, and other stakeholders to help develop a North American EV supply chain. In early 2021, for example, junior miner Canada Nickel Co. Ltd. is reported to have “held talks with U.S. government officials about potentially supplying nickel for electric-car batteries”.\(^{57}\) Just prior, in December 2020, the federal government and Ontario announced investments of $5 million each into First Cobalt Corporation to increase production of battery-grade cobalt sulfate, noting its importance in long-range

EV production. It was also noted that the resultant facility would be able to produce 25,000 tonnes annually.\(^58\)

What are the key EV metals and minerals?

Copper, lithium, nickel, cobalt, graphite, aluminum, and rare-earth elements are all essential to the manufacturing of electric vehicles:

- **Copper** is an electric conductor that can help connect batteries to chargers.
- **Lithium** transfers charge within lithium-ion batteries.
- **Nickel and cobalt** are used in battery cathodes.
- **Graphite** is used in battery anodes.\(^59\)
- **Rare earth elements**, including neodymium (Nd), praseodymium (Pr) and dysprosium (Dy) are often used in magnets contained within EV motors.\(^60\)
- **Aluminum**, a non-battery-specific material, is anticipated to be used to a significantly greater extent, on a per-kilogram basis, in EVs than in conventional vehicles.\(^61\)

Electric vehicle batteries

Mississauga-based Electrovaya Inc. manufactures lithium-ion batteries and related systems and products for electric transportation and other purposes.\(^62\) Stromcore, another Mississauga-based firm, specializes in lithium batteries for forklifts.\(^63\) Tesla

\(^59\) Research Interfaces, “Key Canadian minerals for electric transportation – Fact Sheet.” https://researchinterfaces.com/canadian-minerals-for-electric-transportation/

\(^60\) Claudiu Pavel et al., “Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications,” *Sustainable Materials and Technologies* 12 (2017). https://doi.org/10.1016/j.susmat.2017.01.003

purchased York Region-based Hilbar Systems in 2019, indicating the appeal of Ontario’s battery sector to global EV players.64

Internationally, battery production is concentrated among a small group of companies. The International Council for Clean Transportation (ICCT) has estimated that five companies — CATL, LG Chem, Panasonic, BYD, and Samsung — produced cells for over 200,000 EV battery packs in 2019.65 Announcements for new and/or expanded facilities as of 2025 are expected to bring nearly 1,000 GWh in new global capacity.66 Given that about 20% of this announced capacity has yet to be committed to a regional location, this represents a significant investment and economic growth opportunity for Ontario.67

Work to ensure that Ontario secures a share of battery manufacturing investment is underway. Stellantis NV, for example, has been reported to be in discussions with the federal government about a potential electric vehicle battery plant in either Ontario or Quebec.68

Spotlight on Li-Cycle

Recycling electric-vehicle batteries when they reach end-of-life is also an important part of the EV value chain. It has been estimated that 43,000 to 90,000 metric tonnes of batteries are going to reach end of life as of 2025 in the U.S. Northeast.69

One prominent Ontario company that offers “full-service lithium-ion battery recycling” is Mississauga-headquartered Li-Cycle. Li-Cycle has a plant in the U.S. and in Kingston, Ont.

which was recently upgraded and has the capacity to process 5,000 tonnes worth of lithium-ion batteries annually.70,71

2.3 Ontario’s EV market share lags leading jurisdictions

Ontario’s EV adoption is low72 and currently represents less than 2\% of the total provincial market in sales of vehicles. As shown in Figure 3, ICE models make up most of the overall automotive market.

![Figure 3. Ontario’s vehicle market, 2020](image)

Data source: Statistics Canada73

70 Li-Cycle, “Making lithium-ion batteries a truly circular and sustainable product.” https://li-cycle.com/about/

71 Li-Cycle, “Contact.” https://li-cycle.com/contact/

72 Electric vehicles manufactured in Ontario are being exported and hitting the road in other jurisdictions, however, including the United States. Source: Power Play: Canada’s role in the electric vehicle transition, 6.

73 Electric vehicles definition in footnote #1 used here. Source: “New motor vehicle registrations”.
Electric vehicles are trending towards battery electric

Between 2011 and 2020, the share of BEVs in Ontario’s EV market increased from 33% to 78% while the share of PHEVs declined from 67% to 22%. This has not been an unbroken trend, however, with BEVs overtaking PHEVs in 2013, PHEVs gaining the lead again in 2016, and BEVs coming out on top once more in 2019.74 The market for light-duty FCEVs remains nascent, with just over 100 on the road in Canada in 2020.75

The Boston Consulting Group has projected that the trend of an increasing BEV share will continue, and that, globally, BEVs will make up about 82% of EV sales in 2030 and 88% in 2035 — and that FCEVs will account for only a sliver of sales by 2035.76

While Ontario is by no means at the bottom of the pack in terms of EV market penetration — Manitoba, Saskatchewan, New Brunswick, and P.E.I. are all below 1%77 — it trails leading jurisdictions both within Canada and internationally. Within Canada, Quebec and British Columbia are leaders, at 6.8% and 8.4% market share respectively78 and internationally, EV market share is strongest in Norway (74.5%) and Iceland (52.4%). (See Figure 4.)

77 “New motor vehicle registrations”.
78 Statistic Canada provides data on “British Columbia and the Territories”. Source: “New motor vehicle registrations.”
We investigated why Ontario’s EV market share is considerably lower than leading Canadian jurisdictions and found that while the federal government offers significant EV market support, several data points show that Ontario cannot rely on federal programs alone to accelerate EV adoption in the Ontario market. As shown in Table 1, British Columbia and Quebec, two leading Canadian provinces when it comes to ZEV incentives, account for a disproportionate share of Canadian ZEV uptake and infrastructure. The maximum federal purchase incentive of $5,000, for example, does not cover the average EV-ICE price differential of $10,000 to $27,000.

“New motor vehicle registrations.”

incentives offered in Quebec81,82 and other provinces83 help make up the difference. Between 2019 and 2021, individual purchasers of EVs in British Columbia and Quebec submitted 85\% of requests for EV purchase incentives under the iZEV incentive program.84

Table 1. Share of Canada’s ZEV sales and infrastructure by Ontario, Quebec and British Columbia

<table>
<thead>
<tr>
<th>Measure</th>
<th>Ontario</th>
<th>Quebec</th>
<th>British Columbia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of Canadian vehicle sales, all fuel types (2020)</td>
<td>39%</td>
<td>25%</td>
<td>12%</td>
</tr>
<tr>
<td>Share of Canadian EV sales (2020)</td>
<td>19%</td>
<td>48%</td>
<td>28%</td>
</tr>
<tr>
<td>Share of Canadian PEV85 inventory (2020)</td>
<td>16%</td>
<td>56%</td>
<td>20%</td>
</tr>
<tr>
<td>EV market share (2020)</td>
<td>1.75%</td>
<td>6.8%</td>
<td>8.4%</td>
</tr>
<tr>
<td>Share of iZEV incentive requests (May 2019–May 2021)</td>
<td>11%</td>
<td>56%</td>
<td>29%</td>
</tr>
<tr>
<td>Share of Canadian gasoline stations (2020)</td>
<td>29%</td>
<td>25%</td>
<td>13%</td>
</tr>
<tr>
<td>Share of EV charging and refueling stations (2018)</td>
<td>26%</td>
<td>46%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Data source: Multiple86

82 Province of Quebec, “Frequently asked questions.” https://vehiculeselectriques.gouv.qc.ca/english/rabais/ve-neuf/faq-rabais-vehicule-neuf.asp

85 A “plug-in electric vehicle” (PEV) refers to a subset of electric vehicles including battery-electric and plug-in hybrid electric vehicles. Source: Alternative Fuels Data Center, “Electricity.” https://afdc.energy.gov/fuels/electricity.html

https://www.ic.gc.ca/app/sct/app/cis/businesses-entreprises/447

Natural Resources Canada, “Electric Charging and Alternative Fueling Stations Locator.”

3. Overview of EV policies

Supply-side and demand-side EV policy

Supply-side, or direct industrial-support policy seeks to assist the EV manufacturing industry directly, spurring research and development in EVs and the deployment thereof. Examples include R&D support and production incentives.87

Demand-side, or market-support policy, seeks to increase consumer adoption of electric vehicles. Examples include financial and non-financial incentives and electric vehicle infrastructure buildouts.88

3.1 Ontario’s policies

3.1.1 Supply-side EV policies

In early 2019, Ontario released Driving Prosperity: The Future of Ontario’s Automotive Sector to promote the health, growth, and global competitiveness of its auto sector.89

Actions to support the automotive sector outlined in the strategy included a commitment to reduce the regulatory burden by 25% as of 2020, to develop a network of support infrastructure for connected and autonomous vehicles and EVs, and to “explore support for strategic investments in the automotive industry”.90

Since the release of the strategy, Ontario’s support for EV production has included investing about $300 million in retooling the Ford Oakville Assembly Complex to manufacture battery electric vehicles and, in its 2021 budget, an over $50 million investment in the creation of an Ontario Vehicle Innovation Network (OVIN).91 OVIN will support the accelerated development of technologies related to EVs, as well as

87 This definition of supply-side policies focuses on direct support to manufacturers, as opposed to regulations that would mandate cleaner vehicles or increased ZEV supply.
88 Power Play: Canada’s role in the electric vehicle transition, 25, 24.
90 Driving Prosperity, 12, 15, 14, 16.
91 Ontario’s Action Plan: Protecting People’s Health and Our Economy, 108.
connected and autonomous vehicles. Supply-side programming has also included the province’s contribution of $5 million to First Cobalt Corporation.

3.1.2 Demand-side EV policies

Ontario’s demand-side EV policy is limited in its capacity to significantly grow EV adoption or support domestic EV producers.

Perhaps Ontario’s most prominent demand-side policy is the Green Vehicle License Plate program, which provides electric vehicles weighing less than 3,000 kg with privileged access to high-occupancy vehicle (HOV) and high-occupancy toll (HOT) lanes. This type of non-financial incentive, however, is limited in its impact on EV adoption. According to the Sustainable Transportation Action Research Team (START), a research collaborative at Simon Fraser University, HOV lane access scores “poorly in terms of effectiveness... because there is a limited number of roads with HOV lanes in Canada and HOV lanes only benefit drivers during times of traffic congestion.”

Ontario also has policies and programs aimed at increasing the availability of electric vehicle charging infrastructure. The Ontario Job Creation Investment Incentive allows businesses to write off specified clean energy equipment, including EV charging equipment. Ontario’s 2019 Reserved Parking for Electric Vehicle Charging Act created a provision that restricted the capacity of non-EVs and non-charging EVs to park in electric vehicle charging stations. Ontario’s 2018 Environmental Plan, meanwhile,

92 Ontario’s Action Plan: Protecting People’s Health and Our Economy, 114.
93 “Government of Canada and Province of Ontario invest $10 million to establish North America’s first cobalt refinery in Northern Ontario.”
promised to “improve rules and remove regulatory barriers that block private investors from deploying low-carbon refueling infrastructure...”\(^{100}\)

The province does not have a major public infrastructure buildout program, nor does it provide incentives for the purchase of electric vehicle charging equipment or vehicles, which can help reduce the cost differential between electric and traditional internal combustion engine vehicles.

3.2 Federal demand-side policies

The federal government offers several EV market-supports to encourage EV adoption. The Incentives for Zero-Emission Vehicles program provides point-of-sale incentives of up to $5,000 for the purchase or lease of an eligible ZEV.\(^{101}\) The 2019 federal budget proposed a 100% tax write-off for light-, medium- and heavy-duty zero-emission vehicle purchases by businesses.\(^{102}\) The Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative provides funding to establish a nation-wide network of fast-charging stations along major highway systems as well as hydrogen refueling stations in major metropolitan areas.\(^{103}\) The Zero Emission Vehicle Infrastructure Program offers funding to increase localized charging and refueling infrastructure.\(^{104}\)

Recently, the federal government announced a mandatory target that 100% of new light-duty car and passenger truck sales be zero-emission as of 2035. It has also committed to setting interim targets for 2025 and 2030. The federal government has indicated that this mandatory target will be achieved through existing and new regulation and investment.\(^{105}\)

\(^{101}\) “Zero-emission vehicles.”

\(^{102}\) “Zero-emission vehicles.”

\(^{105}\) Transport Canada, “Building a green economy: Government of Canada to require 100% of car and passenger truck sales be zero-emission by 2035 in Canada,” media release.
It is anticipated that much of the progress towards achieving the 100% target will occur through the federal government aligning its light-duty vehicle greenhouse gas emission regulations with the most ambitious regulations in the United States. It should be noted that the U.S. has set a target of 50% of new vehicle sales being zero-emission as of 2030. In August 2021, the United States Environmental Protection Agency (EPA) proposed strengthening federal passenger car and light truck GHG emission standards through the setting of standards for model years 2023 to 2026. The standards would set 10% stringency increases for model years 2022 and 2023, followed by 5% increases for every model year from 2024 to 2026. The EPA anticipated this would result in an 8% light-duty vehicle fleet penetration by plug-in electric vehicles as of model year 2026. The Biden Administration also intends to further strengthen standards post model year 2026. In California, the Advanced Clean Cars program includes a number of regulations, including the LEV III GHG regulations, which have been projected to reduce GHG emissions from new vehicles by about 40% as of 2025 relative to 2012 model year vehicles. The Canadian federal government indicated it would adopt “additional mandatory measures” should alignment with U.S. fuel economy regulations be insufficient to meet the new target.

3.3 International practices

In 2019, over 95% of EVs and EV batteries were produced in China, Europe, the United States, Japan, and South Korea. Within Europe, the most significant manufacturers have been Germany, France, and the United Kingdom.

106 “Building a green economy: Government of Canada to require 100% of car and passenger truck sales be zero-emission by 2035 in Canada.”

107 The White House, “Fact Sheet: President Biden Announces Steps to Drive American Leadership Forward on Clean Cars and Trucks.”

109 “Fact Sheet: President Biden Announces Steps to Drive American Leadership Forward on Clean Cars and Trucks.”

110 “Building a green economy: Government of Canada to require 100% of car and passenger truck sales be zero-emission by 2035 in Canada.”

112 *Power Play: Canada’s role in the electric vehicle transition*, 24.
In the 2020 report *Power Play: Canada’s role in the electric vehicle transition* by the ICCT and the Pembina Institute, policies to support the EV sector in the countries mentioned above were analyzed. The report found a healthy mix of supply-side policy (including support for research and development and tax incentives for local manufacturing); demand-side policy to increase EV market share (most prominently vehicle-purchase incentives and funding for public charging networks), and regulatory policy. Policies existed either at the national level or at a regional or local level.\(^\text{113}\)

Top EV-producing regions continue to implement comprehensive and balanced policy frameworks. Zero-emission vehicle standards, which require a certain percentage of vehicles sold by manufacturers to be electric, are currently in place in areas including China, California, and numerous other states in the U.S.\(^\text{114}\) In response to the coronavirus pandemic, some countries have also introduced or extended purchasing incentives for EVs. Germany added more incentives for EVs and hybrids, France increased existing subsidies or introduced new subsidies for various EV types, and China extended its EV subsidy program to 2022.\(^\text{115}\) Countries have also introduced new supply-side policies. The United Kingdom’s *Ten Point Plan for a Green Industrial Revolution* included a commitment of £1 billion (C$1.7 billion\(^\text{116}\)) towards “the electrification of UK vehicles and their supply chains,”\(^\text{117}\) and the European Union has announced the European Battery Innovation, a 2.9-billion-euro support package targeting the full battery value chain.\(^\text{118}\)

\(^\text{113}\) *Power Play: Canada’s role in the electric vehicle transition*, 24.

\(^\text{116}\) Conversion based on 2020 exchange rates sourced from the Bank of Canada.

\(^\text{118}\) *Global EV Outlook 2021*, 62.
4. Economic benefits of growing Ontario’s EV market

4.1 The importance of a domestic EV market

Ontario has attracted significant electric vehicle production investments from original equipment manufacturers, in part because of the province’s supply-side investments.119 If Ontario is to protect and build on this production foothold, however, it will need to expand its domestic EV market. Manufacturers generally sell electric vehicles in the same region where they are produced — in 2018, 80% of electric vehicles produced worldwide were sold in the same region where they were manufactured.120 The United States (74%), Europe (81%), South Korea (85%), Japan (92%), and China (almost 100%) were all close to this figure.121

“With announced launches of new EV models spiking, both automakers and suppliers are increasing their global footprints in target markets by localizing the production of vehicles and components...

“...Tesla began construction of its Shanghai plant in January 2019 and delivered the first locally produced EV that December.”

— McKinsey & Company.122

Motor vehicle manufacturers often seek to locate assembly close to markets, especially as they increase in volume.123 The investment and production location decisions of major electric vehicle manufacturers follow this trend:

120 Power Play: Canada’s role in the electric vehicle transition, 5.
121 Power Play: Canada’s role in the electric vehicle transition, 5-6.
123 Power Play: Canada’s role in the electric vehicle transition, 30.
• The Nissan Leaf is produced in the United Kingdom for the European market and in Japan for markets in Asia.124

• Following the phase-out of a United States financial incentive in 2019, Tesla increased its focus on supplying European countries that have incentives including the Netherlands, the United Kingdom, and Norway. Tesla is investing in manufacturing facilities in Berlin and Shanghai to produce vehicles closer to those major markets.125,126

• Volkswagen aims to produce 4 million electric vehicles annually as of 2028 at eight new manufacturing facilities in North America, China, and Europe. Over 95% of the vehicles are destined for those same regions.127

• Nearly 90% of the top-selling international EV models are produced within the markets where their sales are greatest.128

Battery production has followed a similar trend. According to the ICCT, through 2019, about 98% of global electric vehicle sales and battery production has occurred in six main regions — China, Europe, the U.S., Japan, South Korea, and Canada.129

This trend is accelerating, according to McKinsey & Company, which noted that the majority of new capacity will be in Central Europe, in response to regional demand. Large battery manufacturers are increasingly investing overseas, with Chinese manufacturer CATL building a factory in Germany and South Korean SK Innovation announcing additional investment in a factory in the U.S.130

There was greater impetus for supply-chain localization in 2020 as the coronavirus pandemic highlighted the global reliance on China for battery manufacturing and the associated supply risks131 and caused investors to become increasingly concerned with

\begin{itemize}
\item[124] Power Play: Canada’s role in the electric vehicle transition, 30.
\item[125] How Technology, Recycling, and Policy Can Mitigate Supply Risks, 16.
\item[126] McKinsey Electric Vehicle Index: Europe cushions a global plunge in EV sales, 9.
\item[127] How Technology, Recycling, and Policy Can Mitigate Supply Risks, 14.
\item[128] How Technology, Recycling, and Policy Can Mitigate Supply Risks, 3.
\item[129] How Technology, Recycling, and Policy Can Mitigate Supply Risks, 2.
\item[130] McKinsey Electric Vehicle Index: Europe cushions a global plunge in EV sales, 9, 10.
Economic benefits of growing Ontario’s EV market

environmental, social, and governance (ESG) factors and thus with the sustainability of “the entire battery supply chain, from mining to end-user.”

These trends demonstrate that, while supply-side policy is beneficial in attracting electric vehicle production, and while high EV sales are no guarantee of new production facilities, a comprehensive EV industrial policy in Ontario must include efforts to grow the domestic market.

4.2 Automobile supply chain and production

At the federal level, the Government of Canada has set a target of 100% of new light-duty cars and passenger truck sales being zero-emission as of 2035. The Pembina Institute has modeled the direct, indirect, and induced economic benefits and job creation that Ontario could potentially realize in a scenario where 100% of new LDV sales are electric as of 2035.

133 “Building a green economy: Government of Canada to require 100% of car and passenger truck sales be zero-emission by 2035 in Canada.”

Direct, indirect, and induced economic impacts

Direct economic impacts: These are impacts that result from an increase in demand for an industry’s output on that industry. For example, an increase in demand for automobiles may increase employment in assembly plants.

Indirect economic impacts: These are the impacts of an increase in demand for an industry’s output on other industries involved in various stages of production. For example, an increase in demand for automobile manufacturers may increase employment at a tool-and-die manufacturer.

Induced economic impacts: These are the impacts of an increase in demand for an industry’s output on production through increased labour income due to direct and indirect impacts. For example, an increase in demand for automobile manufacturers may increase demand for restaurants near the assembly plant and also near the associated tool-and-die manufacturers.136

Based on our analysis, the direct, indirect and induced impacts of market growth in Ontario’s EV sector could result in over 24,200 jobs and $3.44 billion in GDP in 2035. (Table 2; see Appendix A for an overview of our modeling methodology.)

Table 2. Potential jobs and economic benefits from the increased production, sales, and use of EVs and EV chargers in Ontario

<table>
<thead>
<tr>
<th>Industry</th>
<th>Jobs</th>
<th>Economic benefit (GDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV manufacturing</td>
<td>24,200</td>
<td>$3.44 billion</td>
</tr>
<tr>
<td>EV charger manufacturing</td>
<td>5,800</td>
<td>$0.67 billion</td>
</tr>
<tr>
<td>EV charger installation</td>
<td>17,400</td>
<td>$2.03 billion</td>
</tr>
</tbody>
</table>

Note: Includes direct, indirect and induced jobs and economic benefits. See Appendix A for details and assumptions.

4.2.1 Growth in Ontario’s EV sector can help offset job losses elsewhere in the automobile sector

Over the past two decades, Ontario’s auto sector has been in decline, having suffered a loss of nearly 32,000 jobs in the manufacturing of motor vehicles and motor vehicle parts in that time.\(^{137}\) EV production and the associated supply chain can help offset this loss and provide new employment opportunities to affected autoworkers and new Ontarians entering/re-entering the labour market. The high-value-added nature of auto-sector jobs — automotive wages in Canada are nearly 30% higher than the national average for all workers\(^{138}\) — increases the importance to protect and grow these jobs.

Recent investments in electric vehicle manufacturing have often been made in locations experiencing economic difficulties. Mere months prior to the announcement of EV manufacturing in Windsor, for example, the plant cancelled its third shift.\(^{139}\) In the ratification announcement, Unifor noted that, “Fiat Chrysler forecasts the return of the third shift in Windsor by 2024.”\(^{140}\) Similarly, according to Unifor, prior to the announcement of EV production, the Oakville Assembly Complex had had “a question mark over its head for months… amid analysts’ projections that it would stop producing the Edge SUV.”\(^{141}\)

In late 2019, the Pembina Institute attended the “What’s Next for Oshawa and Auto?” public meeting prior to the closing of the city’s General Motors plant\(^{142,143}\) where it heard

from affected members of the community who described the ripple effect on the broader community (including restaurants and stores) and feeling a lack of control over their personal destinies. However, we also heard community members advocate for EV manufacturing, a desire to be part of a transitioning auto sector, and a willingness to be retrained in EV production.

To what extent will retraining be necessary? And will increased EV manufacturing be capable of fully absorbing current auto-sector workers? Analysis from the Boston Consulting Group (BCG) indicates that there are two main areas in which battery electric vehicles (BEVs) differ from internal combustion engine vehicles (ICEVs). The first is the powertrain. In a BEV, the ICE engine and auxiliary systems are replaced with an electric motor and a battery pack. The second is power electronics — including converters and power electronics controllers. 144

According to BCG, ICE vehicles have significantly more components than BEVs.145 Despite this, BCG analysis indicates that the content per vehicle — a measure of component value146 — of BEVs is about 50% higher than that of ICE vehicles, largely due to high battery costs.147 BCG analysis indicates that some aspects of vehicle production will not significantly change in the shift from ICE vehicles to BEVs — including activities in press, body, and paint shops.148

Labour hours per vehicle also remain relatively constant in vehicle assembly, but would shift from activities such as fuel-tank installation and engine wiring to battery alignment and charging-unit installation.149 The transition from ICEVs to BEVs is likely to significantly reduce labor hours in component and engine/motor manufacturing, while increasing hours in the manufacturing of battery cells, battery modules, and

145 Shifting Gears in Auto Manufacturing, 1.
146 BCG defines content per vehicle as ‘the value of the vehicle’s components to an OEM [original equipment manufacturer] (mainly the amount of raw materials, labor, and profit). Source: Shifting Gears in Auto Manufacturing, 3.
147 Shifting Gears in Auto Manufacturing, 1.
148 Shifting Gears in Auto Manufacturing, 10-11.
149 Shifting Gears in Auto Manufacturing, 10-11.
Battery manufacturing will require labour in areas including equipment operation, production process control, and quality inspection.

Overall, BCG analysis indicated that “total labor hours across the automotive value chain to assemble an electric vehicle will be on par with ICEV manufacturing...” BCG also noted that its comparison was between BEVs and ICEVs, and that hybrid vehicles that have both an electric motor and an engine would have higher labor numbers than either BEVs or ICEVs. This is significant as plug-in hybrid electric vehicles (PHEVs) made up over 50% of Ontario’s EV market as recently as 2017.

It is important to note that, while labour hours may hold more or less constant across the automotive value chain in the shift from BEVs to ICEVs, there will be, as already noted, shifts within the chain. A significant shift will be from automakers to suppliers when automakers choose not to manufacture batteries in-house. BCG analysis indicates that, in the most likely scenario of a mix of in-house and outsourced production, labour hours are reduced by four percentage points.

To maximize the potential for the shift to electrification to contribute to a just transition for autoworkers, policymakers should keep in mind changes in labour and skills requirements within the value chain, as well as the importance of keeping as much of the EV supply chain within the province as possible.

It is important to note that the transition to EVs is an opportunity to address persistent inequities in the sector. Women represent 23% of the workforce in assembly plants, and 25% in parts facilities. This is less than the share of women in the overall manufacturing sector (28%). Women of colour represent 11% of the automotive-parts workforce, which is in line with the national average of 10%, but only 4% of automobile assembly jobs. Skills-training programs should be designed in ways that enable underrepresented demographics, including women, people of colour, rural Ontarians,
and Indigenous peoples, to contribute fully to the growth in Ontario’s automotive sector and overall economy.

4.3 EV infrastructure and services

In addition to electric vehicle manufacturing, there are significant potential economic opportunities associated with the operation of electric vehicles, including the manufacturing and installation of charging infrastructure and the maintenance of EVs.

4.3.1 Charging infrastructure

Ontario’s public electric vehicle charging network currently consists of nearly 1,400 Level 2 chargers and over 500 direct current (DC) fast chargers, located at facilities such as hotels, municipal government buildings, and car dealerships.158 Most of these stations are part of the ChargePoint and FLO networks.159 ChargePoint is headquartered in California160 while FLO has its headquarters and assembly plant in Quebec.161

Nevertheless, Ontario-based, public charging-station providers are increasing in prominence. SWTCH Energy is headquartered in Toronto.162 Most of its Level 2 and all of its Level 3 stations were built in 2020.163 Ontario Power Generation and Hydro One launched the Ivy Charging Network in February 2020, with an anticipated 160 fast chargers installed by the end of 2021.164

158 Natural Resources Canada, “Alternative Fuel Stations; Country: Canada; Province/Territory: Ontario,” spreadsheet, March 2021. https://developer.nrel.gov/api/alt-fuel-stations/v1.csv?access=public%2Cprivate&api_key=ZCWrO99kZWTiFx3MrqfGICcBnCx1ibQSvA1y&cards_accepted=all&cng_fill_type=all&cng_psi=all&cng_vehicle_class=all&country=CA&download=true&e85_has_blender_pump=false&ev

159 “Alternative Fuel Stations; Country: Canada; Province/Territory: Ontario.”

160 ChargePoint, “Contact Information.” https://www.chargepoint.com/en-ca/about/contact/

161 FLO, “About FLO.” https://www.flo.com/en-CA/about/

162 SWTCH, “About SWTCH.” https://swtchenergy.com/about-us

Public infrastructure, however, is only a small part of scaling up EV charging options. About 80% of EV charging happens at the owner’s residence. A group of Ontario-based firms offer EV-charging products and installation. In 2018, for example, Autochargers opened what was touted as Ontario’s “first ever EV charger manufacturing plant” in Markham, projecting an output of 40,000 chargers annually as of 2019 and the creation of 100 jobs. Autochargers currently assembles the Grizzl-E charger at its Markham plant and claims high levels of Canadian content, indicating the flowering of a domestic EV charger supply chain. In addition, GBatteries, an Ottawa-headquartered firm, has created a technology it claims will allow for faster charging with lower battery degradation, while Markham-based MetroEV offers hardware-agnostic EV charger installation services.

Growing Ontario’s EV market would increase demand for associated public and private charging infrastructure. The Pembina Institute projects that, should Ontario hit a target of 100% of the light-duty auto market being electric as of 2035, its electric vehicle charging sector could benefit from nearly 23,200 direct, indirect and induced jobs and over $2.7 billion in GDP.

4.3.2 EV maintenance and services

Overall, electric vehicles cost less to maintain than internal combustion engine vehicles. For example, BEV drivetrains have 90% fewer moving parts; there is less wear and tear on brake pads due to the use of regenerative breaking; and do not require some of the maintenance that ICEVs do such as oil changes. According to the 2 Degrees Institute, BEVs do not require any of the top 10 most common auto repairs and cost approximately 47% less to maintain annually per household compared to ICE vehicles.

167 AutoChargers.ca, “FAQ.” https://www.autochargers.ca/faq.html

Nevertheless, there are complexities in the maintenance of electric vehicles. According to the U.S. Bureau of Labor Statistics, while routine EV maintenance and repair work can be performed by standard repair workers, work on the drivetrain and electrical systems will require a greater degree of specialization.171 Tesla Canada has warned that using a non-Tesla outfit for repairs and maintenance could affect warranty coverage.172 Mechanics may also be reluctant to service electric cars if they don't have the proper training or experience.173

There are however some EV-specialized maintenance and repair shops and EV original equipment manufacture service centres in Ontario (predominantly in southern Ontario).174 Growing Ontario's EV market would also have the knock-on benefit of growing a specialized EV maintenance and repair sector.

\begin{flushleft}
https://www.bls.gov/green/electric_vehicles/#maintenance

174 Tesla Canada, “Tesla Service Centers in Canada.” \\
https://www.tesla.com/en_CA/findus/list/services/Canada

Colorworks Autobody Centers, “Locations.” https://colorworks.ca/locations/#Ontario

Hello Tire Automotive Repair, “Electric and Hybrid Vehicle Repair.” \\
https://www.hellotire.ca/Richmond%20Hill-electric-hybrid.html

\end{flushleft}
5. Policy recommendations

If Ontario is to build on its foothold in electric vehicle manufacturing and generate robust and equitable economic benefits through a strong EV manufacturing sector with a strong supply chain, the province should follow the lead of global EV manufacturing jurisdictions and adopt comprehensive EV industrial policies that encompass supply- and demand-side supports, incentives and regulations.

5.1 Establish an Ontario Transportation Electrification Council and roadmap

There are opportunities to bolster the province’s strategy for the auto industry and improve intergovernmental policy and program co-ordination to ensure efficient and effective use of public spending and continued private sector investment in Ontario’s auto sector. Based on our examination of Canadian EV strategies and elicited factors that are key to achieving desired results, an effective EV strategy and policy framework should include accountability measures, performance indicators and governance structures that identify specific government departments and individuals responsible for strategy co-ordination and implementation.\(^{175,176}\)

Recommendation #1: The Ontario government should establish an Ontario Transportation Electrification Council that will develop a long-term, co-ordinated and holistic electrification strategy for the province. Recognizing the economic benefits from a growing EV market, this strategy should outline a policy approach with co-operation from the departments responsible for transportation, economic development, energy, natural resources, and environment, as well as labour, training, and skills development.

5.2 Build consumer awareness of EV cost savings

Electric vehicles have significantly higher upfront purchase prices than traditional ICE vehicles. The price difference is in the range of $10,000 for short-range cars and $27,000 for long-range SUVs.177

While EV purchase prices remain higher than those of comparable ICE vehicles, EV drivers can save significantly in operational expenditures. Canada’s Energy Regulator (CER) has developed a “Levelized cost of driving” indicator, which estimates the cost of driving a vehicle per kilometre over the course of the vehicle’s lifespan, accounting for maintenance costs, fuel costs, and purchase price. CER analysis indicates that, in Ontario, when accounting for fuel and maintenance costs, EVs are only slightly more expensive on a life cycle basis than comparable ICE vehicles, and will represent a cost-saving proposition as early as 2030. Canada-wide, CER estimates that EV cars are already cost-saving on a life cycle basis relative to ICE cars.178

However, consumers may not be aware of lower EV operational costs. A survey of 1,000 ICE-car owners and 192 EV owners in the Greater Toronto and Hamilton Area found that owners of ICE vehicles appeared unaware of EV operational savings.179 And even consumers who are aware of EV operational savings may not adequately factor them into their vehicle purchase decisions as they may focus on higher upfront purchase prices for EVs and discount the medium- and long-term operational savings (also referred to as consumer “hyperbolic discounting” in behavioural economic theory).180,181

Research has shown that the hyperbolic discounting effect can be combatted by providing information that presents the total cost of ownership of an electric vehicle

177 Nic Lutsey and Michael Nicholas, \textit{Update on electric vehicle costs in the United States through 2030} (ICCT, 2019), 6. https://theicct.org/publications/update-US-2030-electric-vehicle-cost U.S. dollar differences provided by the ICCT were converted to Canadian dollars using the Bank of Canada’s 2018 exchange rate.

and communicating operational savings from EVs in terms of savings missed by consumers through delaying the switch from an ICE vehicle to an EV. In California, the Air Resources Board’s DriveClean website provides information on electric vehicle annual fuel costs. Canada’s Plug ’N Drive website, meanwhile, provides estimates on longer-term cost savings from EVs.

Recommendation #2: To combat low consumer awareness of operational savings from EVs and also the “hyperbolic discounting” effect, the Ontario government can improve its communications efforts to highlight how much Ontarians can potentially save in the longer term from driving EVs.

5.3 Mobilize private capital into EV infrastructure

In recent years, momentum has grown in the area of sustainable finance, driven by factors including new regulations and guidance in the financial sector, changing attitudes and investment profiles among investors, and increased interest in environmental, social, and governance (ESG) performance in the wake of the coronavirus pandemic. Fundamentally, sustainable finance is about leveraging private capital to help meet climate objectives and can be defined as financial processes, risk management activities and, most importantly, capital flows that “assimilate environmental and social factors as a means of promoting sustainable economic growth and the long-term stability of the financial system.”

Green bonds are one illustrative example of progress in sustainable finance. The first green bond was issued in 2007 by the World Bank with issuances increasing rapidly since then. As of 2019, the World Bank had issued US$13 billion in green bonds in 20 different currencies and a cumulative US$754 billion has been issued since market

182 Reducing barriers to electric vehicle uptake: Behavioural insights: Analysis and review, 8.
183 California Air Resources Board, “DriveClean”. https://driveclean.ca.gov/search-vehicles
184 Plug ’N Drive, “Kia Niro EV.” https://ev.plugndrive.ca/vehicles/Kia_Niro_EV_BEV_2020_CA
inception. Globally, the top three sectors that have benefitted from the proceeds from green bonds are energy (32%), buildings (30%) and transport (20%).

What is a bond? What is a green bond?

A bond is a financial mechanism in which an issuer (a government or a financial corporation) takes on debt to raise capital.

A green bond is a bond where funds raised from an issuance are exclusively used for environmental and climate change purposes.

For investors, green bonds offer risk characteristics that are similar to conventional bonds offered by the same issuers but have added benefits of transparency and impact investing.

Ontario is currently the largest issuer of Canadian currency green bonds, which “capitalize on the province’s ability to raise funds at low interest rates,” making nine issues with a total value of $8 billion. Similarly, research has indicated that green bonds may benefit the issuer through a “greenium” — the suggestion that investors will accept lower yields than those of comparable conventional bonds.

The province uses the Ontario Green Bond Framework to define which projects in areas that include clean transportation, energy efficiency and conservation, clean energy and technology, forestry, agriculture and land management, and climate adaptation and resilience can be funded with capital raised from green bond issuances. Over 70% of the funds raised under Ontario’s green-bond issuances have gone to seven clean-transportation projects, including six LRT and subway projects and one bus rapid-

192 Ontario Financing Authority, “Province of Ontario Green Bonds.” https://www.ofina.on.ca/greenbonds/greenbonds.htm

193 Kristin Ulrike Loeffler, Aleksandar Petreski and Andreas Stephan, “Drivers of green bond issuance and new evidence on the “greenium”,” *Eurasian Economic Review*

194 “Province of Ontario Green Bonds”
transit project.195 Ontario could likewise finance electric vehicle infrastructure investments through revenue generated by green bonds. The City of Toronto’s Green Debenture Program, for example, considers infrastructure for electric and low-carbon vehicles eligible for green debenture financing.196 The City of Ottawa Green Debenture Framework generally considers clean energy vehicle infrastructure to be eligible.197 Finally, Hydro Ottawa’s Green Bond Framework considers the “development, acquisition, maintenance, or refurbishment of infrastructure for hybrid-electric, electric, and/or fuel cell vehicles” to be eligible investments.198

Recommendation #3: The Province of Ontario should issue a green bond to finance and grow its EV infrastructure.

5.4 Ensure Ontario’s transportation infrastructure system is ready for EVs

“Range anxiety,” the worry that EVs may lose power during a trip, is a commonly noted barrier to increasing EV-ownership.199 The ability to charge vehicles at the owner’s residence is also important to increasing EV adoption, as most EV charging happens at home.

Level 2 and DC fast chargers

Level 2 chargers, similar to most power outlets, use alternating current (AC) and thus may also be referred to as AC chargers. The EV battery converts the AC charge to direct current (DC) within the vehicle. This conversion process is one reason for the relatively slower speeds of Level 2 chargers. Level 2 chargers are often used for home, work, or public charging. Level 2 chargers often have power outputs ranging between 3 and 22 kW.

195 Ontario Financing Authority “Green Bond Projects” \url{https://www.ofina.on.ca/greenbonds/projects.htm}

196 City of Toronto, “Green Debenture Program”. \url{https://www.toronto.ca/city-government/budget-finances/city-finance/investor-relations/green-debenture-program/}

199 Driving EV Uptake in the Greater Toronto and Hamilton Area, 4.
DC fast chargers convert AC to DC power within the charging station and send DC power straight to the EV battery. As a result, DC chargers are faster. DC chargers are most likely to be used for public charging and often have power outputs ranging from 20 kW to 100 kW.

To ensure Ontario’s transportation infrastructure system is ready for EVs, sufficient private (home and workplace) and public charging infrastructure must be available to minimize range anxiety and ensure the ability to charge from home. In addition, EV-readiness requirements can be useful in ensuring that new or existing buildings are supplied with electric vehicle charging infrastructure.

EV-readiness requirements

The term “electric vehicle readiness” usually refers to requirements for buildings to have at least a minimum amount of infrastructure for EV charging. They may range from requirements for electrical conduit installation in parking spaces to requirements for the installation of EV chargers and related infrastructure.

Globally, most of the major auto-producing regions have policies or targets in place related to EV infrastructure. In 2020 and 2021 surveys, the International Energy Agency found policies including EV-readiness requirements, funding for charging stations, and targets for publicly accessible chargers in major EV-producing regions including China, the European Union, Japan, and the U.S.

The U.K. has committed to investing £1.3 billion into charging infrastructure with a focus on fast chargers on major roads and motorways as well as on-street chargers close to homes.

205 *Global EV Outlook 2021*, 59-60.
to neighbourhoods and workplaces.206 As part of France’s May 2020 \textit{Automobile Support Plan: For a Green and Competitive Industry}, the government committed to a target of 100,000 public chargers by the end of 2021.207 The European Union’s Energy Performance of Buildings Directive “sets requirements for residential and non-residential buildings to improve access to charging points” and is being implemented by member states.208 In the U.S., the California Energy Commission is funding the California Electric Vehicle Infrastructure Project, designed to expand public EV charging locations throughout the state.209 More recently, the American Jobs Plan included a commitment to construct a national network of half a million electric vehicle chargers as of 2050, supported by an investment of US$15 billion.210,211

In Ontario, there are currently about 1,400 Level 2 public chargers and over 300 public DC fast chargers,212 translating into a ratio of about one charger per 25 EVs on the road.213 This compares unfavorably to more than 3,500 provincial gasoline stations214 and the global ratio of about one charger per eight EVs on the road.215

The Sustainable Transportation Action Research Team has estimated that a public charger buildout that resulted in one charger for every two gasoline stations would increase EV market share by two percentage points as of 2040 and has said the policy

\begin{itemize}
\item 206 The Ten Point Plan for a Green Industrial Revolution, 14.
\item 209 Center for Sustainable Energy, “California Electric Vehicle Infrastructure Project.” https://energycenter.org/program/california-electric-vehicle-infrastructure-project
\item 210 The White House, “Fact Sheet: The American Jobs Plan.” https://www.whitehouse.gov/briefing-room/statements-releases/2021/05/31/fact-sheet-the-american-jobs-plan/
\item 211 The White House, “Fact Sheet: Biden Administration Advances Electric Vehicle Charging Infrastructure.” https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-biden-administration-advances-electric-vehicle-charging-infrastructure/
\item 212 Natural Resources Canada, “Alternative Fuel Stations; Country: Canada; Province/Territory: Ontario,” spreadsheet, March 2021. https://www.nrcan.gc.ca/energy-efficiency/transportation-alternative-fuels/electric-charging-alternative-fuelling-stationslocator-map/20487#/find/nearest
\item 215 Ratio at the end of 2019. Source: \textit{Global EV Outlook 2020}, 76.
\end{itemize}
scores well in terms of both public support and simplicity of administration and implementation. The majority of Ontario’s chargers are part of an EV network comprised of ChargePoint, Tesla, FLO, and SWTCH networks. Recently, Ontario Power Generation (OPG) and Hydro One launched the Ivy Charging Network, which aims to be the largest and most connected network in Ontario, with funding support from the federal government. Some of these networks have entered into roaming agreements, in which members can access one another’s respective networks without additional complications or fees.

In addition to public charging stations, funding for private charging is merited. Within Canada, British Columbia’s Go Electric Home and Workplace Charger Rebates program provides 50% of the cost of single-family home chargers, to a maximum of $350 as well as 50% of the cost of workplace, apartment and condominium chargers, to a maximum of $2,000. In Quebec, the Home Charging Station Rebate provides $600 for the purchase of a home charging station and the Multi-unit Building Charging Station Rebate provides up to $5,000 for the purchase and installation of a charging station at a multi-unit building. Funding for private charging stations is particularly important for

216 Canada’s ZEV Policy Handbook, 4, 33-34.
217 “Alternative Fuel Stations; Country: Canada; Province/Territory: Ontario.”
221 British Columbia, “Go Electric Home and Workplace Charger Rebates.” https://www2.gov.bc.ca/gov/content/industry/electricity-alternative-energy/transportation-energies/clean-transportation-policies-programs/clean-energy-vehicle-program/charging-infrastructure
222 The Province of British Columbia also funds the “EV charging rebates for apartment and condo buildings” program, which ‘provides apartment and condo buildings with rebates not just for the EV chargers, but also for the technical upgrades needed to make the building EV Ready.’ Source: BC Hydro, “EV charging rebates for apartment and condo buildings.” https://electricvehicles.bchydro.com/incentives/charger-rebates/apartment
Ontario residents who live in multi-unit residential buildings (MURBs) or who are “garage orphans” (residing in dwellings with no access to garages or driveways) and face unique difficulties with home charging. It is estimated that about one-third of Canadians live in MURBs or are “garage orphans.”\footnote{Government of Canada, “Zero-Emission Vehicle Charging in MURB and Garage-Orphans.” \url{https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-transportation/resource-library/zero-emission-vehicle-charging-murb-and-garage-orphans/21825}} Alternatively, there is potential for public charging to serve as a primary source of power for EV owners living in MURBs or who don’t have access to a garage or driveway.\footnote{Global EV Outlook 2020, 169.}

EV-readiness requirements can ensure a baseline level of EV charging infrastructure in buildings. START has given EV readiness requirements high ratings in areas including public support, policy simplicity, and cost effectiveness, and has estimated that requirements for EV charger availability in all new residential buildings could increase EV market share by 4.5 percentage points as of 2040.\footnote{Canada’s ZEV Policy Handbook, 35-36.} EV-readiness requirements can save money in the long run, as installation costs during initial construction are lower than the cost of retrofitting and therefore align with Ontario’s efforts to fight climate change while saving taxpayers money. Until recently, the Ontario Building Code required EV-readiness for new residential construction.\footnote{City of Toronto, \textit{City of Toronto Electric Vehicle Strategy: Supporting the City in achieving its TransformTO transportation goals}, prepared by Dunsky Energy Consulting (2019), 40. \url{https://www.toronto.ca/wp-content/uploads/2020/02/8c46-City-of-Toronto-Electric-Vehicle-Strategy.pdf}}

\textbf{Recommendation \#4:} To increase widespread availability of EV-charging infrastructure, Ontario should amend the Ontario Building Code to require new residential buildings to be EV-ready. The Ontario government should also play a convening role, bringing stakeholders together to discuss best practices in retrofitting buildings for EV charging infrastructure.

\textbf{Recommendation \#5:} To address “range anxiety,” Ontario should invest in public charging-station availability, including Level 2 chargers and DC fast chargers.
5.5 Help Ontarians save on electric vehicle and private charging purchases

As noted previously, EVs are more expensive than comparable ICE models. The cost of private chargers adds to the upfront purchase price.

As of mid-2020, almost every major auto-producing region provided purchase incentives for electric vehicles. These incentives generally covered battery electric vehicles and plug-in hybrid electric vehicles. Incentives were generally in the range of $6,000C to $9,000C.229

California’s Clean Vehicle Rebate Program provides up to US$7,000 on the purchase or lease of new electric vehicles including BEVs, PHEVs and FCEVs.230 Recently, the U.K. announced a top-up to its Plug-in Car, Van, Taxi and Motorcycle grants with nearly 600 million pounds.231

EV purchase incentives are likely to be a more costly policy option. Nevertheless, the expense is offset by the policy’s advantages. START gave financial-incentive policies high ratings for public support (noting that purchase incentives tend to be popular), policy simplicity (noting that monitoring is straightforward, and legislation is not required) and effectiveness. START estimated that financial incentives in existence at the time — ranging from $500 to $14,000 and funded through 2018 — could increase EV market share between 1.5 and 5 percentage points as of 2040. It estimated that a stronger version of the policy could increase EV market share by 15 to 20 percentage points.232 START named sustained financial incentives as one of three policies “likely to have a large impact on ZEV sales, while being reasonably acceptable to the public.”233

231 The Ten Point Plan for a Green Industrial Revolution, 14.
EVs are expected to achieve price parity with ICE vehicles by the mid-2020s largely due to technological improvements and economies of scale. EV incentives, therefore, can be phased out over time.

It is important that EV incentive programs target populations that stand to benefit the most. Research by the ICCT has found that EV savings relative to income are significantly higher for households in lower income brackets, with those in the lowest-income quintile saving 7% of income annually as of 2030. Lower-income households tend to spend larger proportions of income on vehicle ownership and operation than do median-income households, with the ICCT estimating shares of 50% and 16% respectively. Additionally, research shows that wealthier households are more likely to purchase EVs without subsidization than lower-income households.

Recommendation #6: To help Ontarians save on electric vehicle and private charging purchases, the province should introduce a new financial incentive program to reduce the upfront price difference between electric vehicles and comparable ICE vehicles. Subsidies can remain in place until price parity is achieved in the mid-2020s. Subsidies can be available for both businesses and fleet operators and individual consumers, with program-design considerations to increase EV accessibility for lower-income households and SMEs.

239 Ben Sharpe and Gordon Bauer, “Low-income households could benefit the most from EVs, but we need policy fixes to make that happen,” April 13, 2021, Electric Autonomy. https://electricautonomy.ca/2021/04/13/ev-equity-incentive-policies/
A complementary financial incentive program should be considered for the purchase of private EV chargers in homes, workplaces, and commercial facilities.
6. Conclusion

Only recently has Ontario gained a foothold in the EV manufacturing sector, with billions of dollars of investment being directed into new manufacturing capacity in Oakville, Windsor, and Ingersoll. Ontario’s EV supply chain is also poised for growth, with the province benefiting from significant cobalt, copper, and nickel production, as well as aluminum processing and a nascent battery manufacturing and recycling sector.

To build on this foundation and expand its EV industry, Ontario must develop and operationalize a comprehensive strategy that includes supply-side and demand-side policy to drive growth and EV uptake. Currently Ontario’s EV market share lags behind leading jurisdictions including Germany and China.

Our modeling estimates that, if Ontario were to grow its EV market to account for 100% of total light-duty automobile sales as of 2035, direct, indirect and induced economic benefits associated with EV manufacturing would include over 24,200 jobs, and over $3.4 billion in GDP in 2035. In this scenario, Ontario’s EV charger and maintenance sectors can additionally benefit from nearly 23,200 jobs, and over $2.7 billion in GDP in 2035.

To maximize economic benefits from the transition to EVs, Ontario must take charge by investing in its domestic EV market though financial means as well as non-financial tools and strategies. The province should establish an Ontario Transportation Electrification Council and roadmap, build consumer awareness of the cost savings associated with EV ownership, mobilize private capital into ZEV infrastructure, increase widespread availability of EV charging infrastructure, increase the number of public charging stations in locations where they are most needed, and help Ontarians save on electric vehicle and private charging purchases.
Appendix A. Methodology: Economics and jobs potential

The economic and jobs potential of electric vehicle adoption in Ontario focuses on two main sectors: electric vehicle manufacturing and the production and installation of electric vehicle infrastructure. Economic benefits and job creation from the reinvestment of electric vehicle operational savings into the economy and from increased use of electricity is not examined in this analysis.

As noted, the Government of Canada recently announced an accelerated target of ZEVs making up 100% of new light-duty car and passenger truck sales as of 2035. This paper’s methodology examines the potential economic and jobs benefits that can accrue to Ontario if it hits a target of 100% of light-duty vehicles (including cars, passenger light trucks and freight light trucks) being electric by 2035. Reference scenario percentages are sourced from the Canada Energy Regulator’s Energy Futures 2020 data.\footnote{241}

A.1 Forecasting EV sales and EV stock to 2035

Electric vehicles are split into the categories of “Passenger car” and “Light truck.” Total vehicle sales for each are forecast across all fuel types to 2035 using a linear forecasting method. The targeted percentage of total new light-duty motor vehicle sales that are electric is set at 100% in 2035. The portion of electric vehicle sales that are battery electric (BEV) and plug-in hybrid electric (PHEV) are set through reference to the Boston Consulting Group’s 2021 global EV projections to 2035.\footnote{242} As such, this paper assumes that plug-in electric vehicles (BEVs and PHEVs) will continue making up 100% of EV sales in Ontario from 2021 to 2035.

EV stock is calculated for 2011 to 2035 through the use of cumulative EV sales, adjusted for retirements. The assumption is made that EVs are on the road for 17 years.\footnote{243}

A.2 Job creation and economic benefits in EV manufacturing

The cost of EV passenger cars and light trucks is based on *Update on electric vehicle costs in the United States through 2030* by the International Council for Clean Transportation.\(^{244}\) It is assumed that the share of Ontario’s EV market serviced by Ontario-based production reaches 25% by 2035.\(^{245}\)

Input-output multipliers from Statistics Canada were used to calculate economic and jobs benefits.\(^{246}\) The multipliers are for Ontario, measure benefits occurring within the province, and are for the industry “Automobile and light-duty motor vehicle manufacturing.” This industry is defined as:

“This Canadian industry comprises establishments primarily engaged in manufacturing light-duty vehicles and their chassis, for highway use. The manufacture of electric cars for highway use is included.”\(^{247}\)

Table 3, below, provides an overview of the multipliers used and the resulting direct, indirect, and induced EV manufacturing economic and jobs benefits from Ontario achieving an EV light-duty vehicle market share of 100% by 2035.

<table>
<thead>
<tr>
<th></th>
<th>Revenues</th>
<th>Multiplier</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>$8.9 billion</td>
<td>2.73 jobs per $1 million output</td>
<td>24,200 jobs</td>
</tr>
<tr>
<td>Gross domestic product</td>
<td></td>
<td>$0.39 per $1 output</td>
<td>$3.44 billion GDP</td>
</tr>
</tbody>
</table>

A.3 Jobs and economic benefits in EV charger manufacturing and installation

The installation and manufacturing cost of electric vehicle charging stations is taken from the 2020 study, *The impact of a 2030 ICE phase-out in the U.K.* by Cambridge Econometrics and Element Energy. These include private level 2 chargers (home and work) and public level 2 and DC fast chargers.

Assumptions are made on current (2020) and future (2035) ratios of EV chargers to EVs on the road. The current ratio of public level 2 and DC fast chargers to EVs on the road is sourced from Natural Resources Canada’s *Electric Charging and Alternative Fueling Stations Locator.*

The current ratio of private level 2 chargers to EVs on the road is taken from the International Energy Agency’s *Global EV Outlook 2020.* The future 2035 ratio of private and public level 2 and DC fast chargers to EVs on the road is based on the same publication.

This paper calculates benefits from both the manufacturing and installation of EV chargers. Input-output multipliers from Statistics Canada are used. The multipliers are for Ontario, and measure benefits occurring within the province.

For EV charger manufacturing, the industry “Other electrical equipment and component manufacturing” is used. This industry is defined as:

“This industry group comprises establishments not classified to any other industry group, primarily engaged in manufacturing electrical power storage and transmission devices, and accessories for carrying current.”

249 Natural Resources Canada, “Electric Charging and Alternative Fueling Stations Locator.”

250 *Global EV Outlook 2020*, 74.

252 Statistics Canada, “Input-output multipliers, provincial and territorial, detail level.”

253 Statistics Canada, “3359 – Other electrical equipment and component manufacturing.”
For EV charger installation, the industry “Engineering construction” is used.

The simplifying assumption is made that 100% of EV chargers in Ontario are manufactured and installed in Ontario. As such, economic and jobs estimates will be optimistic, but will also make the case for continued growth in Ontario’s EV charger sector.

Table 4, below, provides an overview of the multipliers used and the resulting direct, indirect, and induced EV charger manufacturing economic and jobs benefits from Ontario achieving an EV light-duty vehicle market share of 100% by 2035.

Table 4. EV charger manufacturing jobs and economic benefits (2035)

<table>
<thead>
<tr>
<th></th>
<th>Revenues</th>
<th>Multiplier</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>$1.22 billion</td>
<td>4.79 jobs per $1 million output</td>
<td>5,800 jobs</td>
</tr>
<tr>
<td>Gross domestic product</td>
<td>$0.55 GDP per $1 output</td>
<td>$0.67 billion GDP</td>
<td></td>
</tr>
</tbody>
</table>

Table 5, below, provides an overview of the multipliers used and the resulting direct, indirect, and induced EV charger installation economic and jobs benefits from Ontario achieving an EV light-duty vehicle market share of 100% by 2035.

Table 5. EV charger installation jobs and economic benefits (2035)

<table>
<thead>
<tr>
<th></th>
<th>Revenues</th>
<th>Multiplier</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>$2.23 billion</td>
<td>7.79 jobs per $1 million output</td>
<td>17,400 jobs</td>
</tr>
<tr>
<td>Gross domestic product</td>
<td>$0.91 GDP per $1 output</td>
<td>$2.03 billion GDP</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. Policy recommendation summary

Table 6. Policy recommendations — summary

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Description</th>
<th>EV barrier addressed</th>
<th>Estimated cost (2022-2024)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation #1: Ontario Transportation Electrification Council</td>
<td>Ontario should establish a Council to lay out a long-term, co-ordinated, and holistic electrification strategy for the province.</td>
<td>Supports recommendations #2-6</td>
<td>NA</td>
</tr>
<tr>
<td>Recommendation #2: Raise awareness among consumers</td>
<td>Ontario should ensure that its current and future EV messaging and communications highlight longer-term EV savings.</td>
<td>Low consumer awareness of and concern for long-term operational savings from EVs</td>
<td>NA</td>
</tr>
<tr>
<td>Recommendation #3: Mobilize private capital into EV infrastructure</td>
<td>Ontario should issue a green bond to help fund EV infrastructure investments through private capital</td>
<td>Supports recommendation #5 Insufficient private sector capital in EVs</td>
<td>NA</td>
</tr>
<tr>
<td>Recommendation #4: EV readiness requirements</td>
<td>Ontario should amend the Ontario Building code to require new residential buildings to be EV-ready.</td>
<td>High costs of retrofitting existing buildings for EV infrastructure Range anxiety</td>
<td>NA</td>
</tr>
<tr>
<td>Recommendation #5: Public charging infrastructure buildout</td>
<td>Ontario should earmark funding for an increased number of public charging stations.</td>
<td>Range anxiety</td>
<td>$100 million</td>
</tr>
<tr>
<td>Recommendation #6.1: EV purchase incentive program</td>
<td>Ontario should implement a financial incentive program for EV purchases.</td>
<td>Higher upfront EV purchase prices relative to ICE vehicles</td>
<td>$250 million</td>
</tr>
<tr>
<td>Recommendation #6.2: Private EV charging incentive program</td>
<td>Ontario should introduce a financial assistance program for the purchase of private EV chargers.</td>
<td>Higher upfront EV purchase prices Range anxiety</td>
<td>$120 million</td>
</tr>
</tbody>
</table>