

Cost Assessment of Selection of Energy Efficiency Strategies for Buildings in British Columbia

Helen Goodland

May 2010

May 2010

Cost Assessment for Selection of Energy Efficiency Strategies for Several Building Types in Select Locations of BC

The purpose of this study is to evaluate and assess costs associated with new construction that employs energy efficiency strategies which result in a 30% improvement over BC Building Code, as applied to four building types in two model BC geographic locations.

To: Alison Bailie Pembina Institute
For questions, please contact: Helen Goodland
Light House Sustainable Building Centre 604-677-3126 Helen@sustainablebuildingcentre.com

Light House Sustainable Building Centre, 2060 Pine St, Vancouver, BC, V6J 4P8 www.sustainablebuildingcentre.com

Executive Summary

Light House has been engaged by Pembina Institute on behalf of a number of BC municipalities to assess the cost implications of energy efficiency and renewables strategies that go beyond minimum BC Building Code requirements. This study assesses new construction strategies that can result in a 30 percent improvement over current building code for multi-family residential and non-residential buildings that are admissible under Part 3 of the Building Code and for single family homes and low rise buildings that fall under Part 9 of the BC Building Code.

Light House has used ASHRAE 90.1 (2004) for Part 3 buildings, which is current BC Building Code. In the case of Part 9 buildings, Light House has revised an existing building model that uses Energuide 80 as a baseline in order to minimize the budget required for energy modelling. Energuide 80 is the baseline in City of Vancouver and is 3 points higher than BC Building Code (which is roughly equivalent to Energuide 77)¹. The study then goes on to provide an estimate of the incremental cost for employing these strategies.

Existing Building Retrof	Existing Building Retrofits					
Part 9	Single Family Homes	City of Vancouver Study (see www.greenbuildingleaders.ca)				
Part 3	17 Building Types	City of Vancouver Study (research underway, report expected late 2010)				
New Construction						
Part 9	Single Family Homes	Included in this study: City of Vancouver Cost Assessment revised and re-evaluated for Interior BC climatic region				
Part 3	3 Building Types: medium hotel, medium commercial, mid-rise residential	Included in this study: Model developed in collaboration with Recollective Consulting				
Renewable Technologies						
Summary of performance and incremental cost	For several different technologies	BC Sustainable Energy Association study (delivered to Pembina) and other reports.				

Table 1: Summary of building types included in the Pembina Institute analysis

¹ It is important to note that the Energuide scale is not linear. Each point is more difficult to attain than the previous.

Table of Contents

EXECUTIVE SUMMARY	2
SECTION 1: PART 9 BUILDINGS	5
SUMMARY OF BUNDLES	
SUMMARY OF ENERGY SAVINGS	
SUMMARY OF INCREMENTAL COSTS	
Bundle A – Envelope upgrades	
Bundle B – Mechanical upgrades, air source heat pump Incentives	
Cost Effectiveness of Upgrades	
SUMMARY AND CAVEATS	
SECTION II: PART 3 BUILDINGS	14
SUMMARY OF ENERGY CONSERVATION MEASURES	14
SUMMARY OF ENERGY STUDY RESULTS	16
SUMMARY OF INCREMENTAL COSTS	18
Office buildings	
Hotels	
MURB	20
APPENDIX I: PART 9 BASE CASE BUILDING DESCRIPTIONS	22
CITY OF VANCOUVER BASE CASE DESCRIPTION	22
TERRACE BC BASE CASE DESCRIPTION	23
APPENDIX II: PART 3 ENERGY STUDY REPORT	25
APPENDIX III -HOT 2000 TECHNICAL COMPARISONS	26
APPENDIX IV -MECHANICAL COST ESTIMATE	28
APPENDIX V – GROUND SOURCE HEAT PUMP ESTIMATE	29
APPENDIX VI – AIR SOURCE HEAT PUMP ESTIMATE	

Index of Tables

TABLE 1: SUMMARY OF BUILDING TYPES INCLUDED IN THE PEMBINA INSTITUTE ANALYSIS	2
TABLE 2: SUMMARY OF PART 9 BASELINE AND BUNDLES – LOWER MAINLAND	6
TABLE 3: SUMMARY OF PART 9 BASELINE AND BUNDLES – INTERIOR BC, NATURAL GAS	6
TABLE 4: SUMMARY OF PART 9 BASELINE AND BUNDLES – INTERIOR BC, ELECTRIC	6
TABLE 5: BUNDLE COMPARISON OF ENERGY COSTS AND GREENHOUSE GAS EMISSIONS - LOWER MAINLANE) .7
TABLE 6: BUNDLE COMPARISON OF ENERGY COSTS AND GREENHOUSE GAS EMISSIONS – INTERIOR BC,	
NATURAL GAS	7
TABLE 7: BUNDLE COMPARISON OF ENERGY COSTS AND GREENHOUSE GAS EMISSIONS – INTERIOR BC,	
ELECTRIC	
TABLE 8: BUNDLE A INCREMENTAL COST COMPARISON – LOWER MAINLAND	8
TABLE 9: BUNDLE A INCREMENTAL COST COMPARISON – INTERIOR BC	8
TABLE 10: UPDATES TO ENERGYSTAR WINDOW STANDARDS	
TABLE 11: BUNDLE B INCREMENTAL COST COMPARISON – LOWER MAINLAND	11
TABLE 12: BUNDLE B INCREMENTAL COST COMPARISON – INTERIOR BC	
TABLE 13: COST EFFECTIVENESS OF EACH BUNDLE - LOWER MAINLAND	
TABLE 14: COST EFFECTIVENESS OF EACH BUNDLE - INTERIOR BC, NATURAL GAS	
TABLE 17: COST EFFECTIVENESS OF EACH BUNDLE - INTERIOR BC, ELECTRIC	13
TABLE 18: SUMMARY BASELINE AND ECMS FOR OFFICE BUILDING	
TABLE 19: SUMMARY BASELINE AND ECMs FOR HOTEL	
TABLE 20: SUMMARY BASELINE AND ECMS FOR MID RISE MURB	16
TABLE 19: BURNABY OFFICE ECM BUNDLES	
TABLE 20: BURNABY HOTEL ECM BUNDLES	
TABLE 21: BURNABY MURB ECM BUNDLES	17
TABLE 22: TERRACE OFFICE ECM BUNDLES	
TABLE 23: TERRACE HOTEL ECM BUNDLES	
TABLE 24: TERRACE MURB ECM BUNDLES	
TABLE 25: OFFICE INCREMENTAL COST ASSESSMENT	19
TABLE 26: HOTEL INCREMENTAL COST ASSESSMENT	20
TABLE 27: MURB INCREMENTAL COST ASSESSMENT	
TABLE 28: BASE CASE DESCRIPTION – LOWER MAINLAND	
TABLE 31: BASE CASE DESCRIPTION – INTERIOR BC, NATURAL GAS	
TABLE 30: BASE CASE DESCRIPTION – INTERIOR BC, ELECTRIC	24

Section I: Part 9 Buildings

The purpose of this section of the study assesses new construction strategies that can result in a 30 percent improvement over current building code for single family homes and low rise buildings that fall under Part 9 of the BC Building Code. Projects that are built in the City of Vancouver are subject to the enhanced performance levels dictated by the Vancouver Building Bylaw.

For this study, we have completed an assessment for model homes located in the City of Vancouver and an assessment for an Interior BC climate. The City of Vancouver Building Bylaw sets energy performance standards for new homes at approximately Energuide 80 under its Green Homes program². By comparison, the BC Building Code's energy performance standard is closer to Energuide 77.

The model homes are buildings based on construction specifications usual to a two-storey south facing single-detached wood frame 2,600 square foot home built in 2008 in one of two climatic regions: Lower Mainland (represented by City of Vancouver) and Interior BC (represented by Terrace). The City of Vancouver model square footage represents the modal average size of a home in the City of Vancouver, and an HRV unit was incorporated to reflect the recent changes in the City's Green Homes Program (close to Energuide 80). The Interior BC model is of a similar size but built to meet BC Building Code specifications (close to Energuide 77).

While objective of the analysis for the City of Vancouver model was to investigate various strategies to achieve Energuide 85, it was determined valuable to model various options for the Interior BC that built on regional construction techniques and climate impacts. As a result, various Energuide levels are derived. The Interior BC bundles include for both natural gas and electric baseboard solutions.

Light House tested two bundles of strategies for this study:

- Bundle A Envelope upgrades (windows, walls and air-tightness)
- Bundle B Mechanical upgrades (high efficiency boilers and an air source heat pump³)

Using the HOT 2000 software, this study evaluates the energy performance and greenhouse gas emissions reductions for each bundle.

Summary of Bundles

The following tables outline the different features in each bundle for each climatic region. In the Interior BC region two models were developed to reflect whether a home relies on natural gas or electricity.

² This study references a June 2009 Light House study for the City of Vancouver which evaluated the incremental costs of building a new singe family Part 9 residential home to a performance standard of Energuide 85 (roughly 30% better than VBBL).

³ While Ground Source Heat Pumps (GSHPs) do give better performance than Air Source Heat Pumps (ASHPs) due to more constant ground temperature, they can be as much as 5 times more expensive than ASHPs. Given that the purpose of the study was to get to EG85 as cost effectively as possible and this was achieved with the ASHP option, modelling GSHPs were excluded.

Table 2: Summary of Part 9 baseline and bundles – Lower Mainland

Summary of upgrades: Lower Mainland				
	Base Case (EG82) Bundle A (EG85)			
Walls	3.86 RSI (R22)	5.6 RSI (R32)	3.86 RSI (R22)	
Air tightness	3.57 ACH	1.5 ACH	3.57 ACH	
Windows	2.0 USI	1.0 USI	2.0 USI	
	(0.35 u-value)	(0.175 u-value)	(0.35 u-value)	
Space heating	90% efficient boiler	90% efficient boiler	95% efficient boiler	
Domestic hot water	Gas fired tank	Gas fired tank	Condensing boiler	
Heat pump			7 kW air source	

Table 3: Summary of Part 9 baseline and bundles - Interior BC, natural gas

Summary of upgrades: Interior BC (natural gas)					
	<u>Base Case (EG77)</u>	Bundle A (EG82)	Bundle B (EG84)		
Walls	3.5 RSI (R20)	7.3 RSI (R41)	3.5 RSI (R20)		
Air tightness	4.55 ACH	3.57 ACH	4.55 ACH		
Windows	1.4 USI (0.25 u-value)	1.0 USI (0.175 u-value)	1.4 USI (0.25 u-value)		
Space heating	95% efficient Forced Air Furnace	95% efficient Forced Air Furnace	95% efficient Forced Air Furnace		
Domestic hot water	Condensing boiler	Condensing boiler	Condensing boiler		
Heat pump			12.5 kW air source		

Table 4: Summary of Part 9 baseline and bundles - Interior BC, electric

Summary of upgrades: Interior BC (electric)					
	Base Case (EG75)	Bundle A (EG80)	Bundle B (EG83)		
Walls	3.5 RSI (R20)	7.3 RSI (R41)	3.5 RSI (R20)		
Air tightness	4.55 ACH	3.57 ACH	4.55 ACH		
Windows	1.4 USI (0.25 u-value)	1.0 USI (0.175 u-value)	1.4 USI (0.25 u-value)		
Space heating	100% efficient baseboard	100% efficient baseboard	100% efficient baseboard		
Domestic hot water	Conventional electric storage tank	Conventional electric storage tank	Conventional electric storage tank		
Heat pump			12.5 kW air source		

Summary of Energy Savings

The study calculated energy savings and associated greenhouse gas emissions reductions using energy mixes specific to the City of Vancouver and Terrace, BC.

The City of Vancouver/Lower Mainland bundles have annual energy cost savings that range from 22% to 28%. The impact on greenhouse gas emissions is greater, ranging from 34% to 59%. In the Terrace/Interior BC model, the annual energy savings for a home with natural gas are restricted to between 12.8% and 15.8%, though greenhouse gas emissions reductions vary greatly from 24.7% to 65.5%. For a home in the Interior powered with electricity⁴, energy savings range from 18.9% to 31.3%, and greenhouse gas reductions range from 19.4% to 31.9%. Table 5, Table 6 and Table 7 outline these savings and the resulting changes in emissions.

For detailed breakdown of the energy saving by type of energy (electricity or natural gas), see Appendix III –Hot 2000 technical comparisons.

Summary of energy costs and greenhouse emissions: Lower Mainland					
	Base Case Bundle A Bundle B				
Energy costs	\$1,458	\$1,139	\$1,056		
Savings	-	\$319	\$402		
% change	-	22%	28%		
GHG emissions (t)	3.15	2.09	1.28		
GHG reductions (t)	-	1.06	1.87		
% change	-	34%	59%		

Table 5: Bundle comparison of energy costs and greenhouse gas emissions - Lower Mainland

Table 6: Bundle comparison of energy costs and greenhouse gas emissions - Interior BC, natural gas

Summary of energy costs and greenhouse emissions: Interior BC (natural gas)			
Base Case Bundle A Bundle B			
Energy costs	\$1,574	\$1,326	\$1,373
Savings	-	\$248	\$201
% change	-	15.8%	12.8%
GHG emissions (t)	3.28	2.47	1.13
GHG reductions (t)	-	0.81	2.15
% change	-	24.7%	65.5%

⁴ For the various electric scenarios, the DHW was modelled as both a conventional storage tank and as an instantaneous electric but it did not change the Energuide (EG) rating. This is because although the instantaneous electric is about 10% more efficient than a storage tank the amount of energy saved is small in comparison to the heating load and therefore does not change the EG. By comparison, the energy savings from natural gas conventional storage tank to instantaneous natural gas is greater, about 28%, and therefore has more of an impact on the EG rating.

Summary of en	Summary of energy costs and greenhouse emissions: Interior BC (electric)			
	Base Case	Bundle A	Bundle B	
Energy costs	\$2,286	\$1,854	\$1,570	
Savings	-	\$432	\$716	
% change	-	18.9%	31.3%	
GHG emissions (t)	0.72	0.58	0.49	
GHG reductions (t)	-	0.14	0.23	
% change	-	19.4%	31.9%	

Table 7: Bundle comparison of energy costs and greenhouse gas emissions – Interior BC, electric

Summary of Incremental Costs

This section outlines and compares the different incremental costs associated with each bundle.

Bundle A – Envelope upgrades

The key upgrades in the this option are to (1) increase the air tightness of the building, measured by the air changes per hour (ACH), (2) increase the wall insulation, and (3) increase the thermal performance of the windows. The incremental costs of each of these upgrades are shown in the tables below. This is followed with a description of the methods that builders can use to achieve these performance upgrades.

Table 8: Bundle A incremental cost comparison – Lower Mainland

Bundle A: Lower Mainland			
Baseline	<u>Costs</u>		
Air tightness of 3.57 (ACH)	Upgrade to 1.5 ACH	n/a	
Wall = 3.86 RSI (R22)	Upgrade to 5.6 RSI (R32) + \$1-3.50 psf	\$2,978 - \$10,423	
Overall Window conductance value = 2.0 USI (0.35 u-value)	Upgrade to 1.0 USI (0.175 u-value)	\$1,215	
	Total incremental cost	\$4,193 – \$11,638	

Table 9: Bundle A incremental cost comparison – Interior BC

Bundle A: Interior BC (natural gas or electric)					
Baseline	Baseline Upgrades				
Air tightness of 4.55 (ACH)	Upgrade to 3.57 ACH	n/a			
Wall = 3.5 RSI (R20)	Upgrade to 7.3 RSI (R41) + \$2-3.75 psf	\$5,956 - \$11,168			
Overall window conductance value = 1.4 USI (0.25 u-value)	Upgrade to 1.0 USI (0.175 u-value)	\$730			
	Total incremental cost	\$6,686 - \$11,898			

Increasing air-tightness

Achieving increased air-tightness depends on the quality of the air barrier that is created around the building. While both the BC Building Code and the Vancouver Building By-law 2007 require an effective air barrier, this requirement is not prescriptive and there are many different materials and systems that can be used to create an air barrier.

Various sub-trades interact the with the air barrier, without any of them being expressly responsible for its final integrity. This leaves it to the contractor to ensure that the correct systems, techniques and job-site habits are communicated and adhered to. Because of this, it is not possible to assess incremental costs in a meaningful way.

Wall insulation upgrades

This upgrade calls for increased insulation, to RSI 5.64 (R32) in the City of Vancouver model, and to RSI 7.3 (R41) in Terrace. There are three methods can achieve this higher insulation level:

- Increase the resistance value for the insulation in the 2x6 wall cavity to 5.64 RSI (R32) or 7.3 RSI (R41). This can only be accomplished with spray-foam insulation, which delivers approximately R7 per inch.⁵ For the City of Vancouver model this would mean increasing the amount of insulation by 2 inches and in the Terrace model we would require an additional 3 inches. The spray foam ranges in installed cost from \$2.00 – \$3.50 per sf.
- 2. Continue with the 3.86 RSI (R22) / 3.5 RSI (R20) in the wall cavity and add extruded polystyrene on the outside. XPS can deliver approximately 4.7-5R per inch. With the City of Vancouver model, 2 inches would result in the effective value of 5.64 RSI (R32).⁶ For the Terrace model, 4 inches or more would be required. In the case of XPS, there is an additional \$1.51 per sf for 2 inches or \$3.02 per sf for 4 inches, but this is only the material cost and doesn't include installation.
- 3. Use structurally insulated panels that have an RSI of 5.64 (R32) or 7.3 RSI (R41). SIPs require a completely different construction approach and it is not appropriate to compare a SIP installation with other construction approaches. However, the incremental cost of going from a structurally insulated panel that is R24 (6 inch) to R32 (8 inch) is approximately \$1.00 \$1.50 per sf, and to go from R20 (5 inch) to R40 (10 inch) is approximately \$2.50 \$3.75 per sf.

The incremental costs associated with the City of Vancouver model wall upgrade range from \$1.00 (for SIPs) to \$3.50 (spray foam insulation) per sf of wall area. With the house having a total insulated wall area of 2,978.37 sf, the total incremental cost for the wall upgrade ranges from approximately \$2,978 to \$10,423.

The incremental costs associated with the Terrace model wall upgrade range from \$2.00 - \$3.75 psf of wall area. With the house having a total insulated wall area of 2,978.37 sf, the total incremental cost for the wall upgrade ranges from approximately \$5,956 - \$11,168.

⁵ The insulation values associated with each material were compiled by Light House research for the City of Vancouver's Passive Design Toolkit for Homes and are set out on pages 19-21 of that document.
⁶ http://wallandceiling.ca/magazine/article/Archetype_Sustainable_House_Green_today_green_tomorrow.html

Window upgrades

The windows on the City of Vancouver model building have an overall conductance value of 2.0 USI (0.35 u-value). This is the ENERGYSTAR minimum standard for windows in Zone A. The overall conductance value includes the panes, the frame, and the window style (slider, awning, casement, picture, etc). For example, a double-pane, low-e, argon filled sliding window from Westcoast Windows has a USI value of 1.77, whereas a casement or picture of the same would have a 1.55 USI.

In the City of Vancouver upgrade, the overall conductance of the windows was increased to 1.0 USI (0.175 u-value). At this value, the window would be triple-paned, with 2 coats of low-e, and double argon filled.⁷ The lowest possible value while still maintaining two panes and a vinyl frame is approximately 1.6 USI (0.28).⁸

The cost difference between USI 2.0 and 1.0 is approximately \$3.33 per sf. With our model house having a total window area of 365.43 sf, the total incremental cost for the window upgrade is \$1,215.

The windows on the Terrace model building have an overall conductance value of 1.4 USI (0.25 u-value). This is currently the ENERGYSTAR minimum standard for windows in Zone D, but effective June 1, 2010 the qualification levels for all of the products will become more stringent by eliminating the current level for Zone A and moving the remaining qualification levels up one zone. New levels have for Zone D have been created.⁹ The model windows must be upgraded to 1.0 USI (0.175 u-value).

	Windows						
		Compliance Paths					
	Heating	Energy Rating (ER)	or	U-Fa	ctor		
Zone	Degree-Day Range	Minimum <u>ER</u> (dimensionless) Maximum U-Factor 2.00 W/m ² •K (0.35 Btu/h•ft. ² •°F)		Maximum U-Factor W/m ² •K (Btu/h•ft. ² •°F)	Minimum ER (dimensionless)		
A	≤ 3500	21	or	1.80 (0.32)	13		
в	> 3500 to ≤ 5500	25	or	1.60 (0.28)	17		
с	> 5500 to \leq 8000	29	or	1.40 (0.25)	21		
D	> 8000	34	or	1.20 (0.21)	25		

Table 10: Updates to ENERGYSTAR window standards

The cost difference between USI 1.4 and 1.0 is less significant, as USI 1.4 implies minimum triple pane glass. The incremental costs would be for increasing the number of panes that have a low-e

⁹ <u>http://oee.nrcan.gc.ca/residential/business/manufacturers/requirements/index.cfm?attr=12#announcement</u>

⁷ JELD–WEN Windows & Doors, conversation with sales associate, March 2009.

⁸ West Coast Windows, JELD-WEN – March 2009.

coating, or the number of argon filled spaces, and would run at approximately \$1.50 per sf.¹⁰ With our model house having a total window area of 365.43 sf, the total incremental cost for the window upgrade is approximately \$730.

Bundle B – Mechanical upgrades, air source heat pump

The key upgrades in this option are (1) to increase the efficiency of the boiler, (2) upgrading the domestic hot water to a condensing boiler, and (3) integrating an air source heat pump. The incremental costs for each of these upgrades are shown in the tables below.

Table 11: Bundle B incremental cost comparison – Lower Mainland

Bundle B: Lower Mainland				
Baseline	Upgrades	<u>Costs</u>		
Condensing boiler = 90% efficient	Upgrade to a 95% efficient condensing boiler	\$0		
Domestic hot water = direct vent (sealed)	Upgrade to condensing boiler	\$330		
No heat pump	Upgrade to 7kW air source heat pump.	\$8,350		
	Total incremental cost	\$8,680		

Table 12: Bundle B incremental cost comparison – Interior BC

Bundle B: Interior BC (natural gas or electric)				
Baseline	<u>Upgrades</u>	<u>Costs</u>		
No heat pump	Upgrade to 12.5kW air source heat pump.	\$8,480		
	Total incremental cost	\$8,480		

According to industry feedback, most boilers on the market today are 92% - 95% efficient and so increasing the efficiency from the base case is just a matter of picking the right model. There is negligible incremental cost associated with this increase in efficiency rating.

In upgrading of the domestic hot water system to a condensing boiler, the incremental cost is approximately \$330 more than the gas-fired tank.¹¹

The 7kW (2 tonne) or 12.5kW (3.5 tonne) air source heat pumps are a significant cost (approximately \$8,300 and \$8,500 respectively, supply only), which result in a minimum pay-back of roughly 12 years¹².

- ¹⁰ JELD–WEN Windows & Doors, conversation with sales associate, February 2010.
- ¹¹ Integrity Mechanical, March 2009
- ¹² Estimate provided by Mitsubishi Electric March 1st 2010 http://www.mitsubishielectric.ca

Incentives

There are a number of incentives available for all of the upgrades outlined above, including federal grants and BC Hydro special offers. The may change the incremental cost calculations slightly in specific cases. For example, PST and GST¹³ may be exempt on select brands of windows, and payment can be deferred for up to six months for others. A complete list is of grants and incentives can be accessed here:

http://www.sustainablebuildingcentre.com/resourcecentre/grants_incentives.

Cost Effectiveness of Upgrades

The value of energy savings and greenhouse gas reductions outlined above have been adjusted based on each upgrade's expected lifespan and used to calculate a simple net cost of installation. Light House did not apply a discount rate to the future energy savings. Although there is a time value of money consideration, energy costs are also projected to increase. It is beyond the scope of this project to determine what the net effect of this process would be, and therefore TVM has been ignored in this model. The cost effectiveness is summarized in the tables below.

Cost-effectiveness in reducing GHGs: Lower Mainland				
	Bundle A	Bundle B		
Expected lifespan of upgrade	40 years	20 years		
Incremental Cost	\$4,193 to \$11,638	\$8,330 to \$12,558		
Value of energy savings (energy saving * expected lifespan)	\$12,760	\$8,040		
Net cost / payback (incremental cost – value of energy savings)	- \$8,567 to - \$1,122	\$290 to \$4,518		
GHG tonnes reduced over lifespan (tonnes reduced * expected lifespan	42.4	37.4		
Cost/tonne of GHG reduced	\$	\$8 - \$121		

Table 13: Cost effectiveness of each bundle - Lower Mainland

¹³ It is anticipated that any change from PST/GST to HST (as proposed by the BC Government as of date of writing) will also similarly exempt high efficiency equipment and appliances.

Cost-effectiveness in reducing GHGs: Interior BC – natural gas				
	Bundle A	Bundle B		
Expected lifespan of upgrade	40 years	20 years		
Incremental Cost	\$6,686 to \$11,898	\$8,680		
Value of energy savings (energy saving * expected lifespan)	\$9,920	\$4,020		
Net cost / payback (incremental cost – value of energy savings)	- \$3,234 to \$1,978	\$4,660		
GHG tonnes reduced over lifespan (tonnes reduced * expected lifespan	32.4	43		
Cost/tonne of GHG reduced	\$ to \$61	\$108		

Table 14: Cost effectiveness of each bundle - Interior BC, natural gas

Table 15: Cost effectiveness of each bundle - Interior BC, electric

Cost-effectiveness in reducing GHGs: Interior BC – electric				
	Bundle A	Bundle B		
Expected lifespan of upgrade	40 years	20 years		
Incremental Cost	\$6,686 to \$11,898	\$8,480		
Value of energy savings (energy saving * expected lifespan)	\$17,280	\$14,320		
Net cost / payback (incremental cost – value of energy savings)	- \$10,594 to - \$5,382	- \$5,840		
GHG tonnes reduced over lifespan (tonnes reduced * expected lifespan	5.6	4.6		
Cost/tonne of GHG reduced	\$	\$		

Summary and Caveats

Based on this study, Bundle A offers the highest cost effectiveness for reduction of greenhouse gas emissions regardless of climate and primary energy source. In each model, the energy savings over 40 years outweighs the incremental costs associated with the strategies of Bundle A, which focus on improvements to the building envelope and air-tightness. A major consideration is that the model is dependent on the assumed characteristics of the base building, and for buildings that have not been built to current BC or Vancouver building codes and bylaws, the incremental cost for each Bundle may vary.

The envelope upgrades of Bundle A are often considered a considerable capital investment versus mechanical upgrades represented by Bundle B, but this study does indicate that due to the longer lifespan of these upgrades, they represent high cost effectiveness in terms of GHG reductions. However, a homeowner's investment horizon may be considerably less than 40 years in many instances¹⁴.

¹⁴ Interview with the City of Vancouver suggest that for multi-family and starter-home categories, the term of ownership is less than 2 years. In most cases, homes are bought and sold within a 5 year window.

Section II: Part 3 Buildings

Light House identified three categories of buildings on which to focus this part of the study: medium commercial, medium hotel and mid-rise multi unit residential. This is based on the contribution of these buildings to greenhouse gas emissions, and the proportion of these buildings in the given municipalities (both estimated to be high, based on data provided by Pembina as part of the BC Hydro CPR 2007 Refuelling Study.

BC Hydro model building types were used to determine the base case for the Lower Mainland and Interior BC climatic regions, with a number of Energy Conservation Measures (ECMs) modelled for their effectiveness to improve energy performance by 30 percent over ASHRAE 90.1 – 2004.

Recollective Consulting (<u>www.recollective.ca</u>) undertook this study using the EE4 Version 1.7 energy modelling software, released and administered by Natural Resources Canada. The base buildings were assumed to be located in Burnaby, BC and Terrace, BC. Recollective modelled the estimated energy savings associated with a number of ECMs, and then provided recommendations on bundles which would best meet the target 30% improvement in energy consumption over the ASHRA 90.1 – 2004 baseline. Broadly, ECMs that were considered to best meet the targets included enhanced envelope performance, variable speed fans and pumps, hydronic heating and cooling, high efficiency condensing boilers, low flow plumbing fixtures and enhanced ventilation with heat recovery. Choices were not based on an evaluation of cost effectiveness, rather on likelihood of achieving the target energy performance standard.

The complete energy modelling study is attached in Appendix II: Part 3 Energy Study Report. Highlights of the study are outlined below, followed by a discussion of cost estimates for achieving specific bundles of measures.

Summary of Energy Conservation Measures

The following is a list of ECMs modelled for each building type and climatic region:

- 1. Improved insulation of Wall and Roof
- 2. Improved window performance (U value and SHGC)
- 3. Reduced lighting power density (10% and 25% over ASHRAE 90.1 2004)
- 4. Heat recovery (60% efficiency)
- 5. Hydronic heating and cooling system
- 6. Variable speed fans
- 7. Variable speed pumps
- 8. Low flow plumbing fixtures
- 9. High efficiency condensing boilers (94% efficiency)
- 10. Renewable energy such as solar PV and solar hot water heating

The tables below indicate what specific strategies have been implemented to accomplish the ECMs that have been modelled for each building type. For instance, ECM 1. Improved insulation of Wall and Roof is achieved by increasing the wall R-value from R15 to R18, and the roof R-value from R30 to R40.

Table 16: Summary baseline and ECMs for Office building

Office	o Height: 10-storey o Floor Area: 9000 m2 o Window to Wall Ratio: 50%	
	Base building	Improved building strategies
	As per ASHRAE 90.1 – 2004	
Building Envelope Wall Roof Fenestration	As per ASHRAE 90.1 – 2004 R15 R30	R18 R40 U=0.40, SHGC = 0.38
HVAC System efficiency	Boiler and Chiller, VAV system, no heat recovery	60% efficiency – through centralized heat recovery ventilator In-floor radiant heating and cooling
		Variable speed fans/Demand Control Ventilation Variable speed pumps
Lighting System	As per ASHRAE 90.1 – 2004	10% Lighting Power Density Reduction over ASHRAE 90.1 – 2004 25% Lighting Power Density Reduction over ASHRAE 90.1 – 2004 Daylight sensors in perimeter space – Continuous dimming
Plug Loads Domestic Hot Water Loads	As per default input in EE4 library As per default calculation by EE4 Gas fired boiler to heat domestic hot water, 82% efficiency Regular flow rate plumbing fixtures	High efficiency condensing boilers with 94% efficiency Low flow plumbing fixtures <i>Sink (0.03 L/s)</i> <i>Lavatory (0.03 L/s)</i> <i>Shower head/Bathtub (0.09 L/s)</i>
Infiltration	As per default input in EE4 library	

Table 17: Summary baseline and ECMs for Hotel

Hotel	o Height: 10-storey o Floor Area: 8000 m2 o Window to Wall Ratio: 40%	
	Base building	Improved building strategies
	As per ASHRAE 90.1 – 2004	
Building Envelope Wall Roof Fenestration	As per ASHRAE 90.1 – 2004 R15 R30	R18 R40 U=0.40, SHGC = 0.38
HVAC System efficiency	Boiler and Chiller, Fan coil system, no heat recovery	60% efficiency – through centralized heat recovery ventilator In-floor radiant heating and cooling Variable speed fans/Demand Control Ventilation Variable speed pumps
Lighting System	As per ASHRAE 90.1 - 2004	10% Lighting Power Density Reduction over ASHRAE 90.1 – 2004 25% Lighting Power Density Reduction over ASHRAE 90.1 – 2004 Daylight sensors in perimeter space – Continuous dimming
Plug Loads	As per default input in EE4 library	
Domestic Hot Water Loads	As per default calculation by EE4	
	Gas fired boiler to heat domestic hot water, 82% efficiency Regular flow rate plumbing fixtures	High efficiency condensing boilers with 94% efficiency Low flow plumbing fixtures <i>Sink</i> (0.03 <i>L/s</i>) <i>Lavatory</i> (0.03 <i>L/s</i>) <i>Shower head/Bathtub</i> (0.09 <i>L/s</i>)
Infiltration	As per default input in EE4 library	

MURB	o Height: 10-storey o Floor Area: 5000 m2 o Window to Wall Ratio: 45%	
	Base building	Improved building strategies
	As per ASHRAE 90.1 – 2004	
Building Envelope	As per ASHRAE 90.1 – 2004	
Wall	R15	R18
Roof	R30	R40
Fenestration		U=0.40, SHGC = 0.5
HVAC System efficiency	Electric heating, no cooling, no heat recovery	60% efficiency – through centralized heat recovery ventilator In-floor radiant heating/overhead radiant heating In-floor radiant heating/overhead radiant heating w/ Variable speed pumps
Lighting System	As per ASHRAE 90.1 – 2004	40% CFLs (40%*13+60%*60=41.2, 1- 41.2/60=0.31 or 31% Lighting Power Density 100% CFLs (1-13/60=0.78 or 78% Reduction)
Plug Loads	As per default input in EE4 library	
Domestic Hot Water Loads	As per default calculation by EE4	
	Gas fired boiler to heat domestic hot water, 82% efficiency	High efficiency condensing boilers with 94% efficiency
	Regular flow rate plumbing fixtures	Low flow plumbing fixtures
		Sink (0.03 L/s)
		Lavatory (0.03 L/s)
		Shower head/Bathtub (0.09 L/s)
Infiltration	As per default input in EE4 library	

Table 18: Summary baseline and ECMs for Mid rise MURB

Summary of Energy Study Results

Based on the energy savings associated with each ECM, Recollective Consulting have outlined bundles of strategies that would be most effective at achieving a 30% improvement in energy use over ASHRAE 90.1 – 2004. The results of the energy improvement associated with each ECM are provided in detail in Appendix II: Part 3 Energy Study Report. This report also discusses the energy saving potential of other ECMs in more detail. The tables below highlight the ECMs that Recollective has suggested be part of the bundles for each building in two different climatic regions

Table 19: Burnaby Office ECM Bundles

	Base building	Improved building strategies	Energy saving	Energy saving
	As per ASHRAE 90.1 – 2004		GJ	%
HVAC System efficiency	Boiler and Chiller, VAV system, no heat recovery	In-floor radiant heating and cooling	936	17.8%
		Variable speed fans/Demand Control Ventilation	372	7.1%
		Variable speed pumps	431	8.2%
Domestic Hot Water Loads	Regular flow rate plumbing fixtures	Low flow plumbing fixtures Sink (0.03 L/s)	265	5.0%
		Lavatory (0.03 L/s)		
		Showerhead/Bathtub (0.09		
		L/s)		
COMBINED ENERGY RED	DUCTION POTENTIAL		1642	31.2%

Table 20: Burnaby Hotel ECM Bundles

	Base building	Improved building strategies	Energy saving	Energy saving
	As per ASHRAE 90.1 – 2004		GJ	%
Domestic Hot Water Loads	Regular flow rate plumbing fixtures	Low flow plumbing fixtures	2010	28.1%
		Sink (0.03 L/s)		
		Lavatory (0.03 L/s)		
		Shower head/Bathtub (0.09 L/s)		
	Gas fired boiler to heat domestic hot water, 82% efficiency	High efficiency condensing boilers with 94% efficiency	643	9.0%
COMBINED ENERG	Y REDUCTION POTENTIAL		2465	34.5%

Table 21: Burnaby MURB ECM Bundles

	Base building	Improved building strategies	Energy saving	Energy saving
	As per ASHRAE 90.1 – 2004		GJ	%
Building Envelope	As per ASHRAE 90.1 – 2004			
	Fenestration	U=0.40, SHGC = 0.5	232	12.2%
Domestic Hot Water Loads	Regular flow rate plumbing fixtures	Low flow plumbing fixtures	372	19.6%
		Sink (0.03 L/s)		
		Lavatory (0.03 L/s)		
		Shower head/Bathtub (0.09 L/s)		
COMBINED ENERG	Y REDUCTION POTENTIAL		604	31.7%

Table 22: Terrace Office ECM Bundles

	Base building	Improved building strategies	Energy saving	Energy saving
	As per ASHRAE 90.1 – 2004		GJ	%
Building Envelope	As per ASHRAE 90.1 – 2004			
	Fenestration	U=0.40, SHGC = 0.38	381	6.4%
HVAC System	Boiler and Chiller, VAV system, no	In-floor radiant heating and cooling	725	12.2%
efficiency	heat recovery			
		Variable speed pumps	567	9.5%
Domestic Hot Water	Gas fired boiler to heat domestic	High efficiency condensing boilers	367	6.2%
Loads	hot water, 82% efficiency	with 94% efficiency		
COMBINED ENERG	Y REDUCTION POTENTIAL	· · ·	1833	30.8%

Table 23: Terrace Hotel ECM Bundles

	Base building	Improved building strategies	Energy saving	Energy saving
	As per ASHRAE 90.1 – 2004		GJ	%
Domestic Hot Water Loads	Gas fired boiler to heat domestic hot water, 82% efficiency	High efficiency condensing boilers with 94% efficiency	2010	25.5%
	Regular flow rate plumbing fixtures	Low flow plumbing fixtures Sink (0.03 L/s) Lavatory (0.03 L/s) Shower head/Bathtub (0.09 L/s)	705	8.9%
COMBINED ENERG	Y REDUCTION POTENTIAL		2527	32.0%

Table 24: Terrace MURB ECM Bundles

	Base building	Improved building strategies	Energy saving	Energy saving
	As per ASHRAE 90.1 – 2004		GJ	%
Building Envelope	As per ASHRAE 90.1 – 2004			
. .	Fenestration	U=0.40, SHGC = 0.5	271	12.4%
Lighting System	As per ASHRAE 90.1 - 2004	40% CFLs (40%*13+60%*60=41.2,	44	2.0%
0 0 7		1-41.2/60=0.31 or 31% Lighting		
		Power Density		
Domestic Hot Water Loads	Regular flow rate plumbing fixtures	Low flow plumbing fixtures	372	17.1%
		Sink (0.03 L/s)		
		Lavatory (0.03 L/s)		
		Shower head/Bathtub (0.09 L/s)		
COMBINED ENERG	Y REDUCTION POTENTIAL	• · · · ·	694	31.9%

Summary of Incremental Costs

It is important to note that costs are not itemized based on specific ECM but rather reflect general costs for changes that could be expected based on Light House's and Omicron Group's knowledge of the industry. These include soft costs, permitting, and other construction related impacts.

Office buildings

The office market has led the uptake of energy efficiency improvements and over time has refined design and construction methodologies to drive down incremental costs associated with energy efficiency improvements.

Costs increments are estimated based on the degree of change necessary to the building envelope and the mechanical and electrical systems. The assumptions are based on a generic building and assumes a replacement approach to basic building components with no synergies or efficiency or trade-off savings (worst case):

Architecture = 40% of total project cost;

Envelope 60% of total architectural cost; Incremental envelope performance enhancement 10% Total incremental cost of architectural work 2.4%

Mechanical = 20% of total project cost Cost of incremental mechanical performance enhancement 20% **Total incremental cost of mechanical work = 4%**¹⁵

Electrical = 15% of total project cost; Cost of incremental electrical performance enhancement 10% Total incremental cost of electrical work = 1.5%

Total incremental cost of achieving the enhanced building = 7.9%

¹⁵ Interview with Cobalt Engineering suggested a range of 2 – 4% for necessary improvements related to mechanical services for offices which is line with the Omicron estimate.

Interviews with practitioners confirm that in many instances, these costs have been fully absorbed¹⁶. This is particularly the case with higher quality Class A projects in high-demand locations (such as downtown Vancouver, Victoria, etc). However, these will have assumed a higher base cost. An incremental cost range of $0 - 7.9\%^{17}$ is presented conditional on location and class of office proposed with the higher increments related to lower spec offices located in smaller communities. Costs are presented as a unit of gross floor area (GFA).

Office	o Height: 10-storey o Floor Area: 9,000sm (96,876sf) o Window to Wall Ratio: 50%	Incremental cost premium: 0% to 7.9%
	Base building	Improved building
Cost per unit GFA	\$2,206 - \$2,959/sm (\$205-275/sf)	\$2,380 - \$3193/sm (\$221 - \$297/sf)
Incremental cost per unit GFA		\$0 - \$234/sm (\$0 - \$22/sf)
Cost for 9,000sm	\$19.8m - \$26.6m	\$21.4m - \$28.7m
building		
Total incremental cost		\$0 - \$2.1m*

Table 25: Office incremental cost assessment

*Note that incremental cost is directly related to how close a project is to the margin. The closer to the marginal cost, the greater the potential for incremental costs. Therefore, while some projects may not incur an incremental cost, they will be positioned at a higher base building price point.

Hotels

The hotel market is characterized by a wide spread of amenity from the basic to the luxury international suite format. While cost increments to improve energy efficiency for the affordable end of the market will be high (estimated in the range of 7.7%)¹⁸, energy an environmental performance is increasingly absorbed into high-end urban projects¹⁹ and resort projects that focus on the eco-tourism market²⁰. Significant energy saving potential is offered through swimming pool heat recovery, presence of parkades, etc, making higher performance easier to attain for more extensively appointed buildings.

Costs increments are estimated based on the degree of change necessary to the building envelope and the mechanical and electrical systems. The assumptions are based on a generic building and assumes a replacement approach to basic building components with no synergies or efficiency or trade-off savings (worst case):

¹⁶ According to Cobalt Engineering and Discovery Parks Inc, the LEED Platinum rated Discovery Green in Burnaby BC is 31.8% better than ASHRAE 90.1.2004 in terms of cost and 25.8% better energy. The additional costs were effectively zero as the enhanced performance was achieved through the substitution of a conventional HVAC system with a Variable Refrigerant Flow System from Mitsubishi Canada.

¹⁷ Cost estimate provided by the Omicron Group

¹⁸ Cost estimate provided by the Omicron Group.

¹⁹ According to Ledcor Construction, a geo-exchange system was included into the Shangri-la hotel in Vancouver with no impact over the budget.

²⁰ For example the LEED Platinum Parkside Resort and Spa, Victoria

Architecture = 40% of total project cost; Envelope 55% of total architectural cost; Incremental envelope performance enhancement 10% Total incremental cost of architectural work 2.2%

Mechanical = 20% of total project cost;

Cost of incremental mechanical performance enhancement 20% Total incremental cost of mechanical work = 4%

Electrical = 15% of total project cost; Cost of incremental electrical performance enhancement 10% Total incremental cost of electrical work = 1.5%

Total incremental cost of achieving the enhanced building = 7.7%

An incremental cost range of $0 - 7.7\%^{21}$ is presented conditional on location and class of hotel and proposed with the higher increments related to lower spec, less well-appointed projects (no pool, etc) located in smaller communities. Costs are presented as a unit of gross floor area (GFA).

Hotel	o Height: 10-storey o Floor Area: 8,000sm (86,240sf) o Window to Wall Ratio: 40%	Incremental cost premium: 0% to 7.7%
	Base building	Improved building
Cost per unit GFA	\$2,588 - \$3,020/sm (\$240-280/sf)	\$2,787 - \$3,252/sm (\$258 - \$302/sf)
Incremental cost per unit GFA		\$0 - \$233/sm (\$0 - \$22/sf)
Cost for 8,000sm	\$20.7m - \$24.1m	\$22.3m - \$26.0m
building		
Total incremental cost		\$0 - \$1.8m*

Table 26: Hotel incremental cost assessment

*Note that incremental cost is directly related to how close a project is to the margin. The closer to the marginal cost, the greater the potential for incremental costs. Therefore, while some projects may not incur an incremental cost, they will be positioned at a higher base building price point.

MURB

The speculative multi-family market conforms to a fairly consistent level of base building construction with price-point differentiation occurring largely from fit and finish strategies. In some urban centres (Kelowna, Victoria, Vancouver), the market has matured sufficiently to accommodate an increasing emphasis on energy performance.

Costs increments are estimated based on the degree of change necessary to the building envelope and the mechanical and electrical systems. The assumptions are based on a generic

²¹ Cost estimate provided by the Omicron Group

building and assumes a replacement approach to basic building components with no synergies or efficiency or trade-off savings (worst case):

Architecture = 40% of total project cost; Envelope 60% of total architectural cost; Incremental envelope performance enhancement 10% Total incremental cost of architectural work 2.4%

Mechanical = 20% of total project cost Cost of incremental mechanical performance enhancement 20%

Total incremental cost of mechanical work = 4%

Electrical = 15% of total project cost;

Cost of incremental electrical performance enhancement 5% Total incremental cost of electrical work = 0.75%

Total incremental cost of achieving the enhanced building = 7.15%

Experienced developers are reporting that the costs of energy performance enhancements are dropping. As an example, Vancity's first high performance building was the Verdant in Burnaby installed a geo exchange system for an approximate budget increase of roughly 5%. This experience helped Vancity to reduce the incremental cost for its 8 storey concrete MURB at Dockside Green to 2%. Vancity is currently developing a five-storey, concrete, mixed-use building (35% more efficient than ASHRAE 90.1.2004) that will likely use only a small geo-exchange loop field to service only the commercial retail units. It is anticipated that there will be negligible cost impact for this project²². As a result it is fair to say that the range of cost impacts are from 0% to 7.15%.

MURB	o Height: 10-storey o Floor Area: 5000sm (53,900sf) o Window to Wall Ratio: 45%	Incremental cost premium: 0% to 7.15%
	Base building	Improved building
Cost per unit GFA	\$2,804 - \$3,505/sm (\$260 - \$325/sf)	\$3,004 - \$3,755/sm (\$279 - \$348/sf)
Incremental cost		\$0 - \$251/sm (\$19 - \$23/sf)
per unit GFA		
Cost for 5,000sm	\$14.0m - \$17.5m	\$15.1m - \$18.7m
building		
Total incremental		\$0 - \$1.25m*
cost		

Table 27: MURB incremental cost assessment

*Note that incremental cost is directly related to how close a project is to the margin. The closer to the marginal cost, the greater the potential for incremental costs. Therefore, while some projects may not incur an incremental cost, they will be positioned at a higher base building price point.

²² Interview with Vancity Enterprises, March 2010

Appendix I: Part 9 base case building descriptions

City of Vancouver base case description

Table 28: Base case description - Lower Mainland

Lower Mainland baseline building: Energuide 80 home constructed in 2008											
Type of house:	Single Detached	Plan Shape:	Re	ctangular							
Number of storeys:	Тwo	Front orientation:	South								
House thermal mass lev	/el:	2x6 Wood frame constru Gyproc walls and ceiling Wooden floor		on, 50mm / 2inches							
Building Envelope Surfa	ice Area:	614.1 m ²									
Ventilation:		Heat Recovery Ventilato	or 85	55 efficiency							
Primary Water Heating	Fuel:	Natural Gas									
Air Tightness Level:		3.57 ACH @ 50 Pa.									
		Wall	3.86 RSI								
		Ceiling	7 RSI								
Nominal insulation value		Basement		3.86 RSI							
	55.	Under slab		2.1 RSI							
		Floor above crawl space	u	4.9 RSI							
		Floor headers	3.9 RSI								
Overall window conduct	ance value:	2.0 USI									
		Condensing boiler		90% efficiency							
Heating system:		Heat Pump		NO							
Water Heating Equipme	ent:	Direct vent (sealed)									
Appuel consumption:		Natural Gas	59,	,798 MJ							
Annual consumption:		Electricity)17 kWh								
Annual costs:		Natural Gas	97								
Annual Costs.		Electricity	61								
Total cost:	\$1,458	GHG Emissions 3.15 tonnes									

Terrace BC base case description

Table 29: Base case description – Interior BC, natural gas

Interior BC natural gas baseline building: Energuide 77 home constructed in 2009											
Type of house:	Single Detached	Plan Shape:	Rectangular								
Number of storeys:	Тwo	Front orientation:	South								
House thermal mass lev	/el:	2x6 Wood frame constru Gyproc walls and ceiling Wooden floor	•								
Building Envelope Surfa	ace Area:	614.1 m ²									
Ventilation:		NO									
Primary Water Heating	Fuel:	Natural Gas									
Air Tightness Level:		4.55 ACH @ 50 Pa.									
		Wall	3.5 RSI								
		Ceiling	7.7 RSI								
Nominal insulation value	201	Basement	3.86 RSI								
	-5.	Under slab	2.1 RSI								
		Floor above crawl space	e 4.9 RSI								
		Floor headers	3.5 RSI								
Overall window conduct	ance value:	1.4 USI									
		Forced Air Furnace	95% efficiency								
Heating system:		Heat Pump	NO								
Water Heating Equipme	ent:	Instantaneous condensi	ing								
Appuel concurrations		Natural Gas	62,415 MJ								
Annual consumption:		Electricity	9,111 kWh								
Annual costs:		Natural Gas \$936									
Annual COSIS.		Electricity \$638									
Total cost:	\$1,574	GHG Emissions	3.28 tonnes								

Table 30: Base case description - Interior BC, electric

Interior BC electric baseline building: Energuide 77 home constructed in 2009											
Type of house:	Single Detached	Plan Shape:	Rectangular								
Number of storeys:	Тwo	Front orientation:	South								
House thermal mass lev	/el:	2x6 Wood frame constru Gyproc walls and ceiling Wooden floor									
Building Envelope Surfa	ice Area:	614.1 m ²									
Ventilation:		NO									
Primary Water Heating	Fuel:	Electric									
Air Tightness Level:		4.55 ACH @ 50 Pa.									
		Wall	3.5 RSI								
		Ceiling	7.7 RSI								
Nominal insulation value		Basement	3.86 RSI								
	55.	Under slab	2.1 RSI								
		Floor above crawl space	e 4.9 RSI								
		Floor headers	3.5 RSI								
Overall window conduct	ance value:	1.4 USI									
Leating avetomy		Electric Baseboard	100% efficiency								
Heating system:		Heat Pump	NO								
Water Heating Equipme	nt:	Electric storage tank									
Annual consumption:		Natural Gas	0 MJ								
		Electricity	32,654 kWh								
Annual costs:		Natural Gas	\$0								
		Electricity	\$2,286								
Total cost:	\$2,286	GHG Emissions 0.72 tonnes									

The HOT 2000 model gives a value for total greenhouse gas emissions that is not based on the BC energy mix. To account for this, the building's annual energy consumption was multiplied by the BC average emissions per unit of energy, as supplied by BC Housing:

- 22 tonnes of GHGs per gigawatt hour of electricity,
- 0.0494 tonnes per gigajoule of natural gas.

Using these numbers, the baseline building emits a total of 3.15 tonnes of greenhouse gases (GHG) per year and operates with \$1,458 in energy costs. This includes only regulated plug loads.

Appendix II: Part 3 Energy Study Report

Light House Sustainable Building Centre 2060 Pine Street, Granville Island, Vancouver, BC, V6J 4P8 www.sustainablebuildingcentre.com

Appendix III - Hot 2000 technical comparisons

City of Vancouver model

Light House Sustainable Building Centre, 2060 Pine St, Vancouver, BC, V6J 4P8 www.sustainablebuildingcentre.com

Terrace, BC model

	C Degree Days: 4400																									
Number of storeys:		1 10																								
	ss: 2x6 wood frame construction, gyproc walls	and ceilings																								
Building Envelope																										
	Area: 264.8 sm (2850 sf)																									
Basement: 1.3m (4	ft) non-heated crawl space																									
															-											
					_						a				-	He	ating System			Domest	tic Hot Water		Annual Co	nsumption		Annual C
Bundle	HOT 2000 File	EnerGuide Rating	GHG Emissions ⁶	GHG Emissions ⁷	Air Tightness ACH @ 50		N	lominal Insulati (RSI)			Overall ⁵ Window Conductance	Ventilati	n		Fuel	Туре	Efficiency (AFUE %)	Heat Pump	Fuel	Туре	Heat Recovery (43%-54%	Insulation Blanket (R10)	Natural Gas (MJ)	Electricity (kWh)	Natural Gas	Electric
		Raung	(tonne)	(tonne)	Pa.	Wall	Ceiling	Floor Above CS	CS Walls	Floor Headers	Value (USI)	Туре	L/s	hr/day			(AFUE %)				Efficiency)	Dialiket (KTU)	(mJ)	(KWII)	Gas	
Base-BCBC-ng	ter2 bcbc-ng	77	9.387	3.284	4.55	3.5	7.7	4.9	2.1	3.5	1.4	n/a	0	0	NG	Forced Air Furnace (12.5 kW)	95	No	NG	Instanteneous Condensing (EF 0.83)	No	N	62.415	9,111	\$936	a se
													,			Electric Baseboard				Electric Conventional			02,00			
Base-BCBC-el	ter2_bcbc-el	75	17.704	0.718	4.55	3.5	7.7	4.9	2.1	3.5	1.4	n/a	0	0	EL	(12.5 kW)	100	No	EL	Tank (EF 0.82)	No	N	0	32,654	\$0	\$2,
Bundle A-ng	ter2_A_ng	82	8.205	2.468	3.57	7.3	11.2	4.9	2.1	7.3	1.0	n/a	0	0	NG	Forced Air Furnace (10 kW)	95	No	NG	Instanteneous Condensing (EF 0.83)	No	N	45,897	9,103	\$688	B ŞI
Bundle A-el	ter2 A el	80	14.358	0.583	3.57	7.3	11.2	4.9	2.1	7.3	1.0	n/a	0	0	EL	Electric Baseboard (10 kW)	100	No	EL	Electric Conventional Tank (EF 0.82)	No	N	0	26,483	s	5 \$1,
Bundle B-ng	ter2 B na	84	9.935	1.128	4.55	3.5	7.7	4.9	2.1	3.5	1.4	n/a	0	0	NG	Forced Air Furnace (12.5 kW)	95	12.5 kW Air Source 7.1 HSPF	NG	Instanteneous Condensing (EF 0.83)	No	N	15,584			
Bundle B-el	ter2_B_el	83	12.162	0.494	4.55	3.5	7.7	4.9	2.1	3.5	1.4	n/a	0	0	EL	Electric Baseboard (12.5 kW)	100	12.5 kW Air Source 7.1 HSPF	EL	Electric Conventional Tank (EF 0.82)	No	N	0	22,433		D \$1,

³ Excess electrical production is fed back into the grid and therefore all electricity generated will reduce annual costs. epending upon the hot water usage in the house, i.e. domestic and/or heating, will determine how much of the potential energy gener

 ⁵ U values vary depending upon window size. U value is imperial.
 ⁶ GHG calculations done by HOT 2000 which uses coal fired electrical generation to calculate GHG emissions for electrcity GHG calculations done by using BC Housing numbers for GHG emissions (22T/GWh - Electricity, 0.0494 T/GJ - Natural Gas)

Appendix IV – Mechanical Cost Estimate

February 3, 2009

Light House Sustainable Building Centre 1575 Johnston Street, Granville Island Vancouver, BC V6H 2R9

RE: City of Vancouver Incremental Cost Study

Eileen,

Please note the additional costs for each of the specified upgraded bundles outlined in your Stage I Report (*December 18, 2008*).

Bundle A: No Mechanical Upgrades

ESTIMATE: \$0.00 + Taxes

Bundle B: Upgrade to 95% Efficient Gas-Fired Boiler Add 3 Ton Air-Source Heat Pump w/ Integrated Reverse Cycle Chiller

 Add 5 Ton An-Source heat Fump wy integrated neverse cycle chiner
ESTIMATE: \$15,228.00 + Taxes

 Bundle C:
 Upgrade to 95% Efficient Gas-Fired Boiler

 Add 3 Ton Air-Source Heat Pump w/ Integrated Reverse Cycle Chiller

 Upgrade to Indirect-Fired Domestic Hot Water Tank

ESTIMATE: \$15,558.00 +Taxes

Bundle D: Add Solar Hot Water Heating System

ESTIMATE: \$9,760.00 + Taxes

Please don't hesitate to call with any questions you may have.

Thank you very much,

Richard Giordano

/1

Integrity Mechanical

Phone: 604-988-3700

705 West 15th Street North Vancouver, V7M 1T2

Fax: 604-988-3730

Light House Sustainable Building Centre, 2060 Pine St, Vancouver, BC, V6J 4P8 www.sustainablebuildingcentre.com

Appendix V — Ground Source Heat Pump Estimate

June 11, 2009

Mr. Matthew Zipchen c/o Light House Sustainable Building Centre 1575 Johnson St. Granville Island Vancouver, B.C. V6H 3R9

Dear Mr. Zipchen,

RE: Estimated Geothermal Costs

As per your email of June 5th, the following is a rough estimate of related costs to install a geothermal (geoexchange) system in a 2850 sq/ft single family home in Vancouver. It should be noted that the exact location needs to be identified to determine the geological conditions for drilling production and thermal conductivity properties.

This home would require a three ton water to air ground source heat pump which will provide space heating and cooling. There is also the option of providing a supplemental source of domestic hot water through a desuper heater.

The heat exchanger (ground loops) would be a vertical closed loop system. The approximate cost including drilling, loop fabrication, insertion, grouting and reverse return headers is \$9,000.00. The interior piping and heat pump installation (start-up and commissioning) is \$7,000.00.

The interior distribution (ductwork) would be relative to a conventional application i.e. gas furnace.

Thank you for your interest in geothermal technology. If you require any further information or clarification, please do not hesitate to contact me.

Cheers,

Barry Milner - Marketing Director

Light House Sustainable Building Centre 2060 Pine Street, Granville Island, Vancouver, BC, V6J 4P8 www.sustainablebuildingcentre.com

Appendix VI – Air Source Heat Pump Estimate

MITSUBISHI ELECTRIC SALES CANADA INC. HVAC EQUIPMENT AND SUPPLIES 107-3686 Bonneville Place Burnaby, BC V3N 4T6 Tel: (604) 415-6487 Fax: (604) 415-6480

To: Light House Sustainable Building Center

2060 Pine Street Vancouver BC V6J 4P8 Phone: 604-677-3619 Fax: 604-682-5961 E-mail :

Date: Quote #: Customer ID: Expiration Date:

March 1, 2010 BCME0226-7 #N/A March 31, 2010

Salesperson	Job		Shipping Terms	Delivery Date	Payment Terms		Due	Date
Mike			Freight Not Included					
	-							
Qty	Model #		Description	Uni	t Price			Line Total
1	ZUBA-PACKAGE-1		ENTRAL - OPTIONAL HEAT				\$	7,284.00
1	65500905	7.5 KW I	HEATER WITH TERMINAL BLOCK				\$	175.00
					Subtotal		s	7,459.00
To accept this C	Quotation please sign,print and retu	m:			GST		\$	372.95
	11				PST	Applicable	S	522.13

ention prepared by: <u>Milico Eliy</u>

This Quotation is for 30 days

Version 9

Telx844156487 Taxx884415-6480 Quotation Validity: 30 days, subject to MESCA term and conditions. Fease ask us for a copy of Terms and Conditions if required It is the responsibility of the recipient to verify and confirm that the equipment selection and system design is correct. Final design liability lies with others.

lies with others. Stock of the equipment should be confirmed at time of ordering. Prices shown are for this project only. We reserve the right to amend our prices accordingly. A rehandling few will be charged for any items esturated to MESCA after delivery. This for will be at MESCA's discretion and all Transport costs shall be the responsibility of the castoner. Mesca will only accept items back if they are in unopened and packaging is in "as new" condition.

\$

8,354.08

Total

Light House Sustainable Building Centre 2060 Pine Street, Granville Island, Vancouver, BC, V6J 4P8 www.sustainablebuildingcentre.com

Incremental Cost Assessment for Selection of Energy Efficiency Strategies for Several Building Types in BC

MITSUBISHI iges for the Bett MITSUBISHI ELECTRIC SALES CANADA INC. HVAC EQUIPMENT AND SUPPLIES 107-3686 Bonneville Place Burnaby, BC V3N 4T6

Tel: (604) 415-6487 Fax: (604) 415-6480

Mike

Qty

1

1

To: Light House Sustainable Building Center

2060 Pine Street Vancouver BC V6J 4P8 Phone: 604-677-3619 Fax: 604-682-5961 E-mail: James

Job Shipping Terms Delivery Date Payment Terms Salesperson Freight Not Included Model # Description ZUBA-PACKAGE-1 ZUBA CENTRAL - OPTIONAL HEAT 12.5 KW HEATER WITH C/BREAKER 65500908

To accept this Quotation please sign, print and return: Mike Elv

This Quotation is for 30 days

Version 9

Tel:604:415:5487 Fax:604-415-6480

One

Teteseat20407 Taxee412-440 Quotation Validity: 30 days, subject to MESCA term and conditions. Please ask us for a copy of Terms and Conditions if required II is the requirement below the recipient to verify and confirm that the equipment selection and system design is correct. Final design liability lies with others.

Stock of the equipment should be confirmed at time of ordering.

These since experiments are constrained on the constraint, These shown are for this project only. We reserve the right to amend our prices accordingly. A rehandling fee will be charged for any items returned to MISCA after delivery. This fee still be at MISCA's discretion and all Transport costs shall be the responsibility of the castomer. Mesca will only accept items back if they are in unapened and packaging is in "as new" condition.

PST Applicable

s

Subtotal

GST

Total

Date: Quote #: Customer ID: Expiration Date:

Unit Price

February 26, 2010 BCME0226-7 #N/A

March 28, 2010

Due Date

s

s

Line Total

7,284.00

7,571.00

378.55

529.97

8,479.52

287.00

Quote

31

Energy Study Report

15 Municipalities

Prepared by:

Jack Cui Senior Building Energy Analyst

Reviewed by:

Brenda Martens Principal

Recollective Consulting Suite #109 - 5 West Pender St. Vancouver BC - Canada V6B 1R3

Phone: 604.669.4940 ext 208 Fax: 604.669.4945 Email: jack@recollective.ca

Issued March 08, 2010

TABLE OF CONTENTS

1.0 SUMMARY	3
2.0 BACKGROUND	5
3.0 ENERGY STUDY RESULTS	7
4.0 CONCLUSIONS AND RECOMMENDATIONS	10
APPENDIX A: BASELINE BUILDING PARAMETERS	11

1.0 SUMMARY

This report represents the energy study results for 15 municipalities mostly located in BC. The 15 municipalities are interested in energy-saving strategies in achieving 30% energy reduction over ASHRAE 90.1 – 2004.

Three building types and two building locations were selected. The building types were office building, hotel, and multi-unit residential building (MURB). The two building locations were Burnaby and Terrace.

Energy conservation measures (ECM) were proposed and groups or bundles of ECMs were analysed per building type at each building location. The energy conservation measures for office building and hotel are listed in Table 1.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40, SHGC = 0.38
ECM6	10% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM7	25% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM8	Daylight sensors in perimeter space – Continuous dimming
ECM9	60% efficiency heat recovery – through centralized heat recovery ventilator
	In-floor radiant heating and cooling
ECM11	Variable speed fans/Demand Control Ventilation
ECM12	Variable speed pumps
ECM13	Low flow plumbing fixtures
ECM14	High efficiency condensing boilers with 94% efficiency (space heating and domestic hot water heating)

Table 1. Energy Conservation Measures for Office Building and Hotel Building

The energy conservation measures for MURB are listed in Table 2.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40 , SHGC = 0.5
ECM6	40% CFLs (31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM7	100% CFLs (78% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM8	60% efficiency HRV – through centralized heat recovery ventilator
ECM9	In-floor radiant heating or overhead radiant heating panel
ECM10	In-floor radiant heating or overhead radiant heating panel with Variable speed pumps
ECM11	Low flow plumbing fixtures
ECM12	High efficiency condensing boilers with 94% efficiency (Domestic hot water heating only)

Table 2. Energy Conservation Measures for MURB

Based on the energy study results, the following bundles of ECMs were found effective in achieving 30%

energy reduction over ASHRAE 90.1 - 2004:

	Burnaby	Terrace
Office	In-floor radiant heating and cooling, demand control ventilation, variable speed pumps, and low-flow plumbing fixtures	Window U = 0.4, SHGC = 0.38, in-floor radiant heating and cooling, variable speed pumps, and high efficiency boilers with 94% efficiency (minimum) for space heating and hot water heating.
Hotel	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating
MURB	Window U = 0.4, SHGC = 0.5, and low-flow plumbing fixtures	Window U = 0.4 , SHGC = 0.5 , 40% CFLs (or 31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004), and low- flow plumbing fixtures

Table 3. Proposed Energy-Saving Strategies

The energy study was based on a "box-type" building with no detailed architectural/mechanical/electrical design, and the results of this study may vary for specific individual buildings. This energy study report should be used as a reference for guidance in energy-saving designs against ASHRAE 90.1 – 2004. We recommend further cost analysis and payback calculations for the selected energy-saving strategies. We also recommend pursuing passive design strategies that give real world energy savings, but are not necessarily accounted for in the energy modelling, such as building orientation, reducing the window to wall ratio, and external shading, etc.

2.0 BACKGROUND

The 15 municipalities mostly located in BC are interested in determining what energy-saving strategies would be able to reduce energy consumption by 30% over ASHRAE 90.1 – 2004. Three building types and two building locations were selected. The building types were office building, hotel, and multi-unit residential building (MURB). The two building locations were Burnaby and Terrace. The following building floor areas were assumed:

- 1. Ten-storey Office Building: 9,000 m²
- 2. Ten-storey Hotel: 8,000 m²
- 3. Ten-storey MURB: 5,000 m²

Baseline Building

The baseline buildings were established with ASHRAE 90.1 - 2004. The baseline building parameters for each building type are listed in Appendix A.

Energy Conservation Measures

Based on the baseline building model, a series of Energy Conservation Measures (ECMs) were evaluated separately to determine the effectiveness of each ECM independently.

Finally, a series of ECMs were grouped into a bundle to determine the overall energy performance of the combined ECMs, taking into account the interactions among the individual ECMs.

The energy conservation measures for office building and hotel are listed in Table 1.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40, SHGC = 0.38
ECM6	10% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM7	25% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM8	Daylight sensors in perimeter space – Continuous dimming
ECM9	60% efficiency heat recovery – through centralized heat recovery ventilator
ECM10	In-floor radiant heating and cooling
ECM11	Variable speed fans/Demand Control Ventilation
	Variable speed pumps
	Low flow plumbing fixtures
ECM14	High efficiency condensing boilers with 94% efficiency (space heating and domestic hot water heating)

Table 1. Energy Conservation Measures for Office Building and Hotel Building

Low-flow plumbing fixtures are considered:

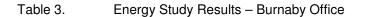
- 1. 0.09 L/s or 1.5 GPM flow rate of Showerhead
- 2. 0.03 L/s or 0.5 GPM flow rate of Faucet

The energy conservation measures for MURB are listed in Table 2.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40, SHGC = 0.5
ECM6	40% CFLs (31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM7	100% CFLs (78% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM8	60% efficiency HRV – through centralized heat recovery ventilator
ECM9	In-floor radiant heating or overhead radiant heating panel
ECM10	In-floor radiant heating or overhead radiant heating panel with Variable speed pumps
ECM11	Low flow plumbing fixtures
ECM12	High efficiency condensing boilers with 94% efficiency (Domestic hot water heating only)

 Table 2.
 Energy Conservation Measures for MURB

Energy Modelling Software


The energy study was performed with Natural Resources Canada's EE4 Version 1.7.

3.0 ENERGY STUDY RESULTS

The energy modelling results are listed below per building type at each building location.

3.1 BURNABY

	Baseline															Proposed
Office	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	2,013	1,869	1,840	1,990	1,984	1,625	2,062	2,138	2,164	2,013	1,214	1,723	2,093	2,013	1,747	1,173
Space Cooling (GJ)	234	234	234	234	234	245	232	230	229	234	290	220	142	234	234	219
Fans & Pumps (GJ)	697	697	696	697	697	712	695	692	691	697	504	629	278	697	697	175
Water Heating (GJ)	386	386	386	386	386	386	386	386	386	386	386	386	386	122	329	122
Interior Lighting (GJ)	1,027	1,027	1,027	1,027	1,027	1,027	925	772	719	1,027	1,027	1,027	1,027	1,027	1,027	1,027
Receptacle and Process Loads (GJ)	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906
Total Regulated Energy (GJ)	4,357	4,212	4,183	4,334	4,328	3,995	4,300	4,217	4,189	4,357	3,421	3,985	3,926	4,092	4,034	2,715
Total Energy Consumption (GJ)	5,263	5,118	5,088	5,240	5,233	4,900	5,206	5,123	5,095	5,263	4,327	4,891	4,831	4,998	4,939	3,621
Energy Saving (GJ)	N/A	145	174	23	29	362	57	140	168	0	936	372	431	265	323	1,642
Energy Saving (%)	N/A	2.7%	3.3%	0.4%	0.6%	6.9%	1.1%	2.7%	3.2%	0.0%	17.8%	7.1%	8.2%	5.0%	6.1%	31.2%
Proposed Bundle											Yes	Yes	Yes	Yes		

For the office building in Burnaby, the in-floor radiant heating/cooling system with demand control ventilation, variable speed pumps, and low-flow plumbing fixtures would be able to reduce 31.2% of energy consumption relative to ASHRAE 90.1 – 2004. In addition, since the baseline building has 50% efficiency heat recovery, the ECM9 (60% heat recovery efficiency) will not be able to demonstrate any energy saving. It is also recommended to consider other significant energy-saving strategies such as ECM5 (Window U = 0.40, SHGC = 0.38) and ECM14 (High efficiency condensing boilers with 94% efficiency for space heating and domestic hot water heating).

	Baseline															Proposed
Hotel	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	1,620	1,458	1,425	1,599	1,593	1,343	1,653	1,702	1,719	1,179	1,879	1,508	1,728	1,620	1,406	1,406
Space Cooling (GJ)	388	389	389	389	390	398	380	369	381	402	342	355	353	388	388	388
Fans & Pumps (GJ)	1,111	1,111	1,111	1,111	1,111	1,111	1,111	1,111	1,111	1,217	526	1,021	779	1,111	1,111	1,111
Water Heating (GJ)	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	876	2,456	634
Interior Lighting (GJ)	926	926	926	926	926	926	832	694	764	926	926	926	926	926	926	926
Receptacle and Process Loads (GJ)	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
Total Regulated Energy (GJ)	6,930	6,769	6,736	6,910	6,905	6,662	6,862	6,762	6,861	6,610	6,558	6,696	6,672	4,920	6,287	4,465
Total Energy Consumption (GJ)	7,142	6,981	6,949	7,123	7,117	6,875	7,074	6,974	7,073	6,822	6,771	6,909	6,884	5,132	6,499	4,677
Energy Saving (GJ)	N/A	161	194	20	25	267	68	168	69	320	372	233	258	2,010	643	2,465
Energy Saving (%)	N/A	2.3%	2.7%	0.3%	0.4%	3.7%	1.0%	2.4%	1.0%	4.5%	5.2%	3.3%	3.6%	28.1%	9.0%	34.5%
Proposed Bundle														Yes	Yes	

Table 4.Energy Study Results – Burnaby Hotel

For the hotel in Burnaby, the hot water heating energy is a significant percentage and therefore the first step to achieve 30% energy reduction over ASHRAE 90.1 – 2004 is to reduce hot water heating energy. Any other energy-saving strategies without changing HVAC system such as ECM5 (Window U = 0.40, SHGC = 0.38), ECM12 (Variable Speed Pumps), and ECM 14 (High efficiency condensing boilers with 94% efficiency for space heating and domestic hot water heating), will be the design strategies to achieve 30% energy reduction.

	Baseline													Proposed
MURB	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	Bundle
Space Heating (GJ)	882	842	822	865	859	651	925	993	850	1,071	1,154	882	882	651
Space Cooling (GJ)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fans & Pumps (GJ)	38	38	38	38	38	38	38	38	407	171	60	38	38	38
Water Heating (GJ)	537	537	537	537	537	537	537	537	537	537	537	164	457	164
Interior Lighting (GJ)	276	276	276	276	276	276	191	63	276	276	276	276	276	276
Receptacle and Process Loads (GJ)	172	172	172	172	172	172	172	172	172	172	172	172	172	172
Total Regulated Energy (GJ)	1,733	1,692	1,672	1,715	1,710	1,501	1,691	1,630	2,069	2,055	2,027	1,360	1,653	1,129
Total Energy Consumption (GJ)	1,905	1,864	1,845	1,887	1,882	1,673	1,863	1,803	2,242	2,228	2,199	1,533	1,825	1,301
Energy Saving (GJ)	N/A	41	60	18	23	232	42	102	-337	-323	-294	372	80	604
Energy Saving (%)	N/A	2.1%	3.2%	0.9%	1.2%	12.2%	2.2%	5.4%	-17.7%	-16.9%	-15.4%	19.6%	4.2%	31.7%
Proposed Bundle						Yes						Yes		

Table 5	Enc
Table 5.	Ene

Energy Study Results – Burnaby MURB

For the MURB in Burnaby, the space heating and hot water heating are two major energy consumers. ECM5 with SHGC of 0.5 will be able to use solar gain to reduce space heating requirements. Low-flow plumbing fixtures will be able to significantly reduce hot water heating energy. However, comparing to electric heating system, the in-floor radiant heating system is not demonstrating energy reduction in a MURB.

For the MURB, ECM8 (60% efficiency heat recovery) reduces space heating energy through make-up air unit but it will increase fan energy as well. Overall, heat recovery ventilator in the MURB does not reduce energy consumption over the baseline building. In addition, ECM9 and ECM10 (In-floor radiant heating with and without Variable Speed Pumps) consumes more energy than the baseline building mostly because in-floor radiant heating system requires hydronic pumps but the baseline building with electric baseboard heating does not, and secondly the efficiency of electric heating is 100% while the efficiency of in-floor radiant heating with gas-fired boilers is 80%.

	Baseline															Proposed
Office	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	2,347	2,172	2,136	2,317	2,308	1,908	2,391	2,458	2,482	2,347	1,670	2,093	2,509	2,347	2,037	1,279
Space Cooling (GJ)	321	319	319	320	320	339	318	313	316	321	415	302	213	321	321	367
Fans & Pumps (GJ)	971	968	967	970	969	1,011	964	956	963	971	828	952	349	971	971	217
Water Heating (GJ)	386	386	386	386	386	386	386	386	386	386	386	386	386	122	329	329
Interior Lighting (GJ)	1,027	1,027	1,027	1,027	1,027	1,027	927	772	855	1,027	1,027	1,027	1,027	1,027	1,027	1,027
Receptacle and Process Loads (GJ)	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906
Total Regulated Energy (GJ)	5,051	4,871	4,835	5,019	5,010	4,670	4,986	4,885	5,002	5,051	4,326	4,759	4,484	4,787	4,684	3,219
Total Energy Consumption (GJ)	5,957	5,777	5,741	5,925	5,916	5,576	5,892	5,791	5,908	5,957	5,232	5,665	5,390	5,692	5,590	4,124
Energy Saving (GJ)	N/A	180	216	32	41	381	65	166	49	0	725	292	567	265	367	1,833
Energy Saving (%)	N/A	3.0%	3.6%	0.5%	0.7%	6.4%	1.1%	2.8%	0.8%	0.0%	12.2%	4.9%	9.5%	4.4%	6.2%	30.8%
Proposed Bundle						Yes					Yes		Yes		Yes	

3.2 TERRACE

 Table 6.
 Energy Study Results – Terrace Office

For the office building in Terrace, the in-floor radiant heating/cooling system with variable speed pumps, improved window performance, and high efficiency boilers would be able to reduce 30.8% of energy consumption relative to ASHRAE 90.1 – 2004. In addition, since the baseline building has 50% efficiency heat recovery, the ECM9 (60% efficiency heat recovery) will not be able to demonstrate any energy saving. It is also recommended to consider other significant energy-saving strategies such as ECM11 (Demand control ventilation) and ECM13 (Low-flow plumbing fixtures) as well. The recommended energy-saving strategies for the office building in Terrace are different from the ones in Burnaby due to the change of climatic conditions.

	Baseline															Proposed
Hotel	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	2,088	1,883	1,841	2,059	2,051	1,736	2,121	2,170	2,187	1,557	2,366	1,951	2,307	2,088	1,812	1,812
Space Cooling (GJ)	455	453	453	456	457	463	448	436	447	465	407	419	424	455	455	455
Fans & Pumps (GJ)	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,435	718	1,244	834	1,329	1,329	1,329
Water Heating (GJ)	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	876	2,456	634
Interior Lighting (GJ)	926	926	926	926	926	926	834	694	764	926	926	926	926	926	926	926
Receptacle and Process Loads (GJ)	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
Total Regulated Energy (GJ)	7,684	7,477	7,435	7,656	7,648	7,340	7,617	7,515	7,613	7,269	7,302	7,426	7,377	5,674	6,979	5,157
Total Energy Consumption (GJ)	7,896	7,689	7,647	7,869	7,861	7,552	7,829	7,728	7,825	7,481	7,515	7,638	7,589	5,886	7,191	5,369
Energy Saving (GJ)	N/A	207	249	28	35	344	67	168	71	415	381	258	307	2,010	705	2,527
Energy Saving (%)	N/A	2.6%	3.2%	0.3%	0.4%	4.4%	0.8%	2.1%	0.9%	5.3%	4.8%	3.3%	3.9%	25.5%	8.9%	32.0%
Proposed Bundle														Yes	Yes	

Table 7.	Energy Study Results – Terrace Hotel
----------	--------------------------------------

For the hotel in Terrace, the hot water heating energy is a significant percentage and therefore the first step to achieve 30% energy reduction over ASHRAE 90.1 – 2004 is to reduce hot water heating energy. Any other energy-saving strategies without changing HVAC system such as ECM5 (Window U = 0.40, SHGC = 0.38), ECM12 (Variable speed pumps), and ECM 14 (High efficiency condensing boilers with 94% efficiency for space heating and domestic hot water heating), will be the design strategies to achieve 30% energy reduction. The energy results are the same as the hotel building in Burnaby.

	Baseline													Proposed
MURB	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	Bundle
Space Heating (GJ)	1,157	1,109	1,085	1,134	1,127	886	1,197	1,261	1,014	1,351	1,479	1,157	1,157	919
Space Cooling (GJ)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fans & Pumps (GJ)	38	38	38	38	38	38	38	38	426	287	111	38	38	38
Water Heating (GJ)	537	537	537	537	537	537	537	537	537	537	537	164	457	164
Interior Lighting (GJ)	276	276	276	276	276	276	191	63	276	276	276	276	276	191
Receptacle and Process Loads (GJ)	172	172	172	172	172	172	172	172	172	172	172	172	172	172
Total Regulated Energy (GJ)	2,007	1,959	1,936	1,984	1,978	1,736	1,963	1,898	2,253	2,450	2,403	1,635	1,927	1,313
Total Energy Consumption (GJ)	2,179	2,131	2,108	2,157	2,150	1,909	2,135	2,071	2,425	2,623	2,575	1,807	2,099	1,485
Energy Saving (GJ)	N/A	48	71	23	29	271	44	109	-246	-443	-396	372	80	694
Energy Saving (%)	N/A	2.2%	3.3%	1.0%	1.3%	12.4%	2.0%	5.0%	-11.3%	-20.3%	-18.2%	17.1%	3.7%	31.9%
Proposed Bundle						Yes	Yes					Yes		

Table 9.	Energy Study Results – Terrace MURB
----------	-------------------------------------

Due to the change of climatic conditions, space heating energy in Terrace is required more than in Burnaby. Therefore, for the MURB in Terrace, in addition to ECM5 (Window U = 0.40, SHGC = 0.38) and ECM 11 (Low-flow plumbing fixtures), one more ECM was required to achieve 30% energy reduction over ASHRAE 90.1 – 2005, and ECM6 (10% lighting power density reduction over ASHRAE 90.1 – 2004) was recommended. Overall, the recommended ECM5, ECM6, and ECM11, would be able to achieve 31.9% energy reduction.

For the MURB, heat recovery ventilator (ECM8) reduces space heating energy through make-up air unit but it will increase fan energy as well. Overall, heat recovery ventilator in the MURB does not reduce energy consumption over the baseline building. In addition, in-floor radiant heating (ECM9 and ECM10) consumes more energy than the baseline building mostly because in-floor radiant heating system requires hydronic pumps but the baseline building with electric baseboard heating does not, and secondly the efficiency of electric heating is 100% while the efficiency of in-floor radiant heating with gas-fired boilers is 80%.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the above analysis, the following energy-saving strategies are recommended in order to achieve 30% energy reduction over ASHRAE 90.1 – 2004:

	Burnaby	Terrace				
Office	In-floor radiant heating and cooling, demand control ventilation, variable speed pumps, and low-flow plumbing fixtures (ECM10, ECM11, ECM12, and ECM13)	Window U = 0.4, SHGC = 0.38, in-floor radiant heating and cooling, variable speed pumps, and high efficiency boilers with 94% efficiency (minimum) for space heating and hot water heating (ECM5, ECM10, ECM12, and ECM14)				
Hotel	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating (ECM13 and ECM14)	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating (ECM13 and ECM14)				
MURB	Window U = 0.4, SHGC = 0.5, and low-flow plumbing fixtures (ECM5 and ECM11)	Window U = 0.4, SHGC = 0.5, 40% CFLs (or 31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004), and low- flow plumbing fixtures (ECM5, ECM6, and ECM11)				

Table 10.	Proposed Energy-Saving Strategies
-----------	-----------------------------------

The energy study was based on a "box-type" building with no detailed architectural/mechanical/electrical design, and the results of this study may vary for specific individual buildings. This energy study report should be used as a reference for guidance in energy-saving designs against ASHRAE 90.1 – 2004. We recommend further cost analysis and payback calculations for the selected energy-saving strategies. We also recommend pursuing passive design strategies that give real world energy savings, but are not necessarily accounted for in the energy modelling, such as building orientation, reducing the window to wall ratio, and external shading, etc.

Appendix A: Baseline Building Parameters

Office Building

	Project Baseline
Exterior Surfaces	
Wall Overall R-Value (IP Unit)	R8.1 (Mass Building: U=0.123)
Roof Overall R-Value (IP Unit)	R15.9 (Insulation Entirely Above Deck: U=0.063)
Glazing	
Glazing Percent	50%
Window U-Value (IP Unit)	0.46
Solar Heat Gain Coefficient	0.26
Space Conditions	
Lighting	1.0 W/ft ² or 10.76 W/m ²
Equipment Density	0.7 W/ft ² or 7.5 W/m ²
Lighting Controls	N/A
HVAC Systems Type	
Air handling unit	Hot Water Heating and Cooling with Economizer
Space Heating	VAV plus Hot Water Reheat
Principle heating Fuel Type	Natural Gas
Cooling Source	Chilled Water
Fan System	
Make-up Air Unit	N/A
Fan Power	1.1 hp/1000 CFM
Outside Air	18 CFM/Person or 8.5 L/s/Person
Occupant Density	25 m ² /person
Heat Reclaim	50% Efficiency
HVAC Controls	
Economizer	Differential Enthalpy
Central Plant	
Central Heating System	Natural Gas Boiler
Central Heating Efficiency (AFUE)	80.00%
Central Cooling System	Chiller - Centrifugal
Central Cooling Efficiency	COPstd=5.0;IPLVstd=5.25
Air Cooled - Fan Power	176,000 BTUH/Horsepower
Pumps	Head: 150 feet
Domestic Hot Water	
Heating Efficiency (AFUE)	80.00%
	Shower Heads: 0.16 L/s or 2.5 GPM; Peak Load Percentage: 25%
Plumbing Fixtures - Flow Rates	Faucets: 0.14 L/s or 2.2 GPM; Peak Load Percentage: 75%
Operating Conditions	
Indoor Design Temperatures	Winter: 21.1°C; Summer: 23.3°C
Operating Schedules	As per EE4 Default
Building Floor Area (m ²)	9,000

Hotel

	Project Baseline
Exterior Surfaces	
Wall Overall R-Value (IP Unit)	R8.1 (Mass Building: U=0.123)
Roof Overall R-Value (IP Unit)	R15.9 (Insulation Entirely Above Deck: U=0.063)
Glazing	
Glazing Percent	40%
Window U-Value (IP Unit)	0.57
Solar Heat Gain Coefficient	0.39
Space Conditions	
Lighting	1.0 W/ft ² or 10.76 W/m ²
Equipment Density	0.23 W/ft ² or 2.5 W/m ²
Lighting Controls	N/A
HVAC Systems Type	
Air handling unit	N/A
Space Heating	Fan coil
Principle heating Fuel Type	Natural Gas
Cooling Source	Chilled Water
Fan System	
Make-up Air Unit	Supply Air Temperature = 18°C with Heating and Cooling Coils
Fan Power	1.2 hp/1000 CFM
Outside Air	11.65 CFM/Person or 5.5 L/s/Person
Occupant Density	25 m ² /person
Heat Reclaim	N/A
HVAC Controls	
Economizer	Differential Enthalpy
Central Plant	
Central Heating System	Natural Gas Boiler
Central Heating Efficiency (AFUE)	80.00%
Central Cooling System	Chiller - Centrifugal
Central Cooling Efficiency	COPstd=5.0;IPLVstd=5.25
Air Cooled - Fan Power	176,000 BTUH/Horsepower
Pumps	Head: 150 feet
Domestic Hot Water	
Heating Efficiency (AFUE)	80.00%
	Shower Heads: 0.16 L/s or 2.5 GPM; Peak Load Percentage: 25%
Plumbing Fixtures - Flow Rates	Faucets: 0.14 L/s or 2.2 GPM; Peak Load Percentage: 75%
Operating Conditions	
Indoor Design Temperatures	Winter: 21.1°C; Summer: 23.3°C
Operating Schedules	As per EE4 Default
Building Floor Area (m ²)	8,000
Assumptions:	

Assumptions:

1. It is assumed that the fan power of fan coils is calculated with 0.7 Watt/L/s or 0.33 Watt/CFM.

MURB

	Project Baseline
Exterior Surfaces	r toject basenne
Wall Overall R-Value (IP Unit)	R11.1 (Mass Building: U=0.09)
Roof Overall R-Value (IP Unit)	R15.9 (Insulation Entirely Above Deck: U=0.063)
Glazing	
Glazing Percent	45%
Window U-Value (IP Unit)	0.46
Solar Heat Gain Coefficient	0.26
Space Conditions	
Lighting	0.7 W/ft ² or 7.5 W/m ²
Equipment Density	0.23 W/ft ² or 2.5 W/m ²
Lighting Controls	N/A
HVAC Systems Type	
Air handling unit	N/A
Space Heating	Electric Baseboard
Principle heating Fuel Type	Electric
Cooling Source	N/A
Fan System	
Make-up Air Unit	Supply Air Temperature = 18° C with gas heating only
Fan Power	1.2 hp/1000 CFM
Outside Air	16 CFM/person or 7.5 L/s/person
Occupant Density	60 m ² /person
Heat Reclaim	N/A
HVAC Controls	
Economizer	N/A
Central Plant	
Central Heating System	N/A
Central Heating Efficiency (AFUE)	N/A
Central Cooling System	N/A
Central Cooling Efficiency	N/A
Air Cooled - Fan Power	N/A
Pumps	N/A
Domestic Hot Water	
Heating Efficiency (AFUE)	80.00%
	Shower Heads: 0.16 L/s or 2.5 GPM; Peak Load Percentage: 25%
Plumbing Fixtures - Flow Rates	Faucets: 0.14 L/s or 2.2 GPM; Peak Load Percentage: 75%
Operating Conditions	
Indoor Design Temperatures	Winter: 21.1°C; Summer: 23.3°C
Operating Schedules	As per EE4 Default
Building Floor Area (m ²)	5,000

Energy Study Report

15 Municipalities

Prepared by:

Jack Cui Senior Building Energy Analyst

Reviewed by:

Brenda Martens Principal

Recollective Consulting Suite #109 - 5 West Pender St. Vancouver BC - Canada V6B 1R3

Phone: 604.669.4940 ext 208 Fax: 604.669.4945 Email: jack@recollective.ca

Issued March 08, 2010

TABLE OF CONTENTS

1.0 SUMMARY	3
2.0 BACKGROUND	5
3.0 ENERGY STUDY RESULTS	7
4.0 CONCLUSIONS AND RECOMMENDATIONS	10
APPENDIX A: BASELINE BUILDING PARAMETERS	11

1.0 SUMMARY

This report represents the energy study results for 15 municipalities mostly located in BC. The 15 municipalities are interested in energy-saving strategies in achieving 30% energy reduction over ASHRAE 90.1 – 2004.

Three building types and two building locations were selected. The building types were office building, hotel, and multi-unit residential building (MURB). The two building locations were Burnaby and Terrace.

Energy conservation measures (ECM) were proposed and groups or bundles of ECMs were analysed per building type at each building location. The energy conservation measures for office building and hotel are listed in Table 1.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40, SHGC = 0.38
ECM6	10% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM7	25% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM8	Daylight sensors in perimeter space – Continuous dimming
ECM9	60% efficiency heat recovery – through centralized heat recovery ventilator
	In-floor radiant heating and cooling
ECM11	Variable speed fans/Demand Control Ventilation
ECM12	Variable speed pumps
ECM13	Low flow plumbing fixtures
ECM14	High efficiency condensing boilers with 94% efficiency (space heating and domestic hot water heating)

Table 1. Energy Conservation Measures for Office Building and Hotel Building

The energy conservation measures for MURB are listed in Table 2.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40 , SHGC = 0.5
ECM6	40% CFLs (31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM7	100% CFLs (78% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM8	60% efficiency HRV – through centralized heat recovery ventilator
ECM9	In-floor radiant heating or overhead radiant heating panel
ECM10	In-floor radiant heating or overhead radiant heating panel with Variable speed pumps
ECM11	Low flow plumbing fixtures
ECM12	High efficiency condensing boilers with 94% efficiency (Domestic hot water heating only)

Table 2. Energy Conservation Measures for MURB

Based on the energy study results, the following bundles of ECMs were found effective in achieving 30%

energy reduction over ASHRAE 90.1 - 2004:

	Burnaby	Terrace					
Office	In-floor radiant heating and cooling, demand control ventilation, variable speed pumps, and low-flow plumbing fixtures	Window U = 0.4 , SHGC = 0.38 , in-floor radiant heating and cooling, variable speed pumps, and high efficiency boilers with 94% efficiency (minimum) for space heating and hot water heating.					
Hotel	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating					
MURB	Window U = 0.4, SHGC = 0.5, and low-flow plumbing fixtures	Window U = 0.4, SHGC = 0.5, 40% CFLs (or 31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004), and low- flow plumbing fixtures					

Table 3. Proposed Energy-Saving Strategies

The energy study was based on a "box-type" building with no detailed architectural/mechanical/electrical design, and the results of this study may vary for specific individual buildings. This energy study report should be used as a reference for guidance in energy-saving designs against ASHRAE 90.1 – 2004. We recommend further cost analysis and payback calculations for the selected energy-saving strategies. We also recommend pursuing passive design strategies that give real world energy savings, but are not necessarily accounted for in the energy modelling, such as building orientation, reducing the window to wall ratio, and external shading, etc.

2.0 BACKGROUND

The 15 municipalities mostly located in BC are interested in determining what energy-saving strategies would be able to reduce energy consumption by 30% over ASHRAE 90.1 – 2004. Three building types and two building locations were selected. The building types were office building, hotel, and multi-unit residential building (MURB). The two building locations were Burnaby and Terrace. The following building floor areas were assumed:

- 1. Ten-storey Office Building: 9,000 m²
- 2. Ten-storey Hotel: 8,000 m²
- 3. Ten-storey MURB: 5,000 m²

Baseline Building

The baseline buildings were established with ASHRAE 90.1 - 2004. The baseline building parameters for each building type are listed in Appendix A.

Energy Conservation Measures

Based on the baseline building model, a series of Energy Conservation Measures (ECMs) were evaluated separately to determine the effectiveness of each ECM independently.

Finally, a series of ECMs were grouped into a bundle to determine the overall energy performance of the combined ECMs, taking into account the interactions among the individual ECMs.

The energy conservation measures for office building and hotel are listed in Table 1.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40, SHGC = 0.38
ECM6	10% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM7	25% Lighting Power Density Reduction over ASHRAE 90.1 – 2004
ECM8	Daylight sensors in perimeter space – Continuous dimming
ECM9	60% efficiency heat recovery – through centralized heat recovery ventilator
ECM10	In-floor radiant heating and cooling
ECM11	Variable speed fans/Demand Control Ventilation
	Variable speed pumps
	Low flow plumbing fixtures
ECM14	High efficiency condensing boilers with 94% efficiency (space heating and domestic hot water heating)

Table 1. Energy Conservation Measures for Office Building and Hotel Building

Low-flow plumbing fixtures are considered:

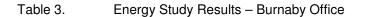
- 1. 0.09 L/s or 1.5 GPM flow rate of Showerhead
- 2. 0.03 L/s or 0.5 GPM flow rate of Faucet

The energy conservation measures for MURB are listed in Table 2.

ECM#	ECM Description
ECM1	R15 Wall
ECM2	R18 Wall
ECM3	R30 Roof
ECM4	R40 Roof
ECM5	Window U = 0.40, SHGC = 0.5
ECM6	40% CFLs (31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM7	100% CFLs (78% Lighting Power Density Reduction over ASHRAE 90.1 – 2004)
ECM8	60% efficiency HRV – through centralized heat recovery ventilator
ECM9	In-floor radiant heating or overhead radiant heating panel
ECM10	In-floor radiant heating or overhead radiant heating panel with Variable speed pumps
ECM11	Low flow plumbing fixtures
ECM12	High efficiency condensing boilers with 94% efficiency (Domestic hot water heating only)

 Table 2.
 Energy Conservation Measures for MURB

Energy Modelling Software


The energy study was performed with Natural Resources Canada's EE4 Version 1.7.

3.0 ENERGY STUDY RESULTS

The energy modelling results are listed below per building type at each building location.

3.1 BURNABY

	Baseline															Proposed
Office	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	2,013	1,869	1,840	1,990	1,984	1,625	2,062	2,138	2,164	2,013	1,214	1,723	2,093	2,013	1,747	1,173
Space Cooling (GJ)	234	234	234	234	234	245	232	230	229	234	290	220	142	234	234	219
Fans & Pumps (GJ)	697	697	696	697	697	712	695	692	691	697	504	629	278	697	697	175
Water Heating (GJ)	386	386	386	386	386	386	386	386	386	386	386	386	386	122	329	122
Interior Lighting (GJ)	1,027	1,027	1,027	1,027	1,027	1,027	925	772	719	1,027	1,027	1,027	1,027	1,027	1,027	1,027
Receptacle and Process Loads (GJ)	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906
Total Regulated Energy (GJ)	4,357	4,212	4,183	4,334	4,328	3,995	4,300	4,217	4,189	4,357	3,421	3,985	3,926	4,092	4,034	2,715
Total Energy Consumption (GJ)	5,263	5,118	5,088	5,240	5,233	4,900	5,206	5,123	5,095	5,263	4,327	4,891	4,831	4,998	4,939	3,621
Energy Saving (GJ)	N/A	145	174	23	29	362	57	140	168	0	936	372	431	265	323	1,642
Energy Saving (%)	N/A	2.7%	3.3%	0.4%	0.6%	6.9%	1.1%	2.7%	3.2%	0.0%	17.8%	7.1%	8.2%	5.0%	6.1%	31.2%
Proposed Bundle											Yes	Yes	Yes	Yes		

For the office building in Burnaby, the in-floor radiant heating/cooling system with demand control ventilation, variable speed pumps, and low-flow plumbing fixtures would be able to reduce 31.2% of energy consumption relative to ASHRAE 90.1 – 2004. In addition, since the baseline building has 50% efficiency heat recovery, the ECM9 (60% heat recovery efficiency) will not be able to demonstrate any energy saving. It is also recommended to consider other significant energy-saving strategies such as ECM5 (Window U = 0.40, SHGC = 0.38) and ECM14 (High efficiency condensing boilers with 94% efficiency for space heating and domestic hot water heating).

	Baseline															Proposed
Hotel	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	1,620	1,458	1,425	1,599	1,593	1,343	1,653	1,702	1,719	1,179	1,879	1,508	1,728	1,620	1,406	1,406
Space Cooling (GJ)	388	389	389	389	390	398	380	369	381	402	342	355	353	388	388	388
Fans & Pumps (GJ)	1,111	1,111	1,111	1,111	1,111	1,111	1,111	1,111	1,111	1,217	526	1,021	779	1,111	1,111	1,111
Water Heating (GJ)	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	876	2,456	634
Interior Lighting (GJ)	926	926	926	926	926	926	832	694	764	926	926	926	926	926	926	926
Receptacle and Process Loads (GJ)	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
Total Regulated Energy (GJ)	6,930	6,769	6,736	6,910	6,905	6,662	6,862	6,762	6,861	6,610	6,558	6,696	6,672	4,920	6,287	4,465
Total Energy Consumption (GJ)	7,142	6,981	6,949	7,123	7,117	6,875	7,074	6,974	7,073	6,822	6,771	6,909	6,884	5,132	6,499	4,677
Energy Saving (GJ)	N/A	161	194	20	25	267	68	168	69	320	372	233	258	2,010	643	2,465
Energy Saving (%)	N/A	2.3%	2.7%	0.3%	0.4%	3.7%	1.0%	2.4%	1.0%	4.5%	5.2%	3.3%	3.6%	28.1%	9.0%	34.5%
Proposed Bundle														Yes	Yes	

Table 4.Energy Study Results – Burnaby Hotel

For the hotel in Burnaby, the hot water heating energy is a significant percentage and therefore the first step to achieve 30% energy reduction over ASHRAE 90.1 – 2004 is to reduce hot water heating energy. Any other energy-saving strategies without changing HVAC system such as ECM5 (Window U = 0.40, SHGC = 0.38), ECM12 (Variable Speed Pumps), and ECM 14 (High efficiency condensing boilers with 94% efficiency for space heating and domestic hot water heating), will be the design strategies to achieve 30% energy reduction.

	Baseline													Proposed
MURB	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	Bundle
Space Heating (GJ)	882	842	822	865	859	651	925	993	850	1,071	1,154	882	882	651
Space Cooling (GJ)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fans & Pumps (GJ)	38	38	38	38	38	38	38	38	407	171	60	38	38	38
Water Heating (GJ)	537	537	537	537	537	537	537	537	537	537	537	164	457	164
Interior Lighting (GJ)	276	276	276	276	276	276	191	63	276	276	276	276	276	276
Receptacle and Process Loads (GJ)	172	172	172	172	172	172	172	172	172	172	172	172	172	172
Total Regulated Energy (GJ)	1,733	1,692	1,672	1,715	1,710	1,501	1,691	1,630	2,069	2,055	2,027	1,360	1,653	1,129
Total Energy Consumption (GJ)	1,905	1,864	1,845	1,887	1,882	1,673	1,863	1,803	2,242	2,228	2,199	1,533	1,825	1,301
Energy Saving (GJ)	N/A	41	60	18	23	232	42	102	-337	-323	-294	372	80	604
Energy Saving (%)	N/A	2.1%	3.2%	0.9%	1.2%	12.2%	2.2%	5.4%	-17.7%	-16.9%	-15.4%	19.6%	4.2%	31.7%
Proposed Bundle						Yes						Yes		

Table 5	Enc
Table 5.	Ene

Energy Study Results – Burnaby MURB

For the MURB in Burnaby, the space heating and hot water heating are two major energy consumers. ECM5 with SHGC of 0.5 will be able to use solar gain to reduce space heating requirements. Low-flow plumbing fixtures will be able to significantly reduce hot water heating energy. However, comparing to electric heating system, the in-floor radiant heating system is not demonstrating energy reduction in a MURB.

For the MURB, ECM8 (60% efficiency heat recovery) reduces space heating energy through make-up air unit but it will increase fan energy as well. Overall, heat recovery ventilator in the MURB does not reduce energy consumption over the baseline building. In addition, ECM9 and ECM10 (In-floor radiant heating with and without Variable Speed Pumps) consumes more energy than the baseline building mostly because in-floor radiant heating system requires hydronic pumps but the baseline building with electric baseboard heating does not, and secondly the efficiency of electric heating is 100% while the efficiency of in-floor radiant heating with gas-fired boilers is 80%.

	Baseline															Proposed
Office	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	2,347	2,172	2,136	2,317	2,308	1,908	2,391	2,458	2,482	2,347	1,670	2,093	2,509	2,347	2,037	1,279
Space Cooling (GJ)	321	319	319	320	320	339	318	313	316	321	415	302	213	321	321	367
Fans & Pumps (GJ)	971	968	967	970	969	1,011	964	956	963	971	828	952	349	971	971	217
Water Heating (GJ)	386	386	386	386	386	386	386	386	386	386	386	386	386	122	329	329
Interior Lighting (GJ)	1,027	1,027	1,027	1,027	1,027	1,027	927	772	855	1,027	1,027	1,027	1,027	1,027	1,027	1,027
Receptacle and Process Loads (GJ)	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906	906
Total Regulated Energy (GJ)	5,051	4,871	4,835	5,019	5,010	4,670	4,986	4,885	5,002	5,051	4,326	4,759	4,484	4,787	4,684	3,219
Total Energy Consumption (GJ)	5,957	5,777	5,741	5,925	5,916	5,576	5,892	5,791	5,908	5,957	5,232	5,665	5,390	5,692	5,590	4,124
Energy Saving (GJ)	N/A	180	216	32	41	381	65	166	49	0	725	292	567	265	367	1,833
Energy Saving (%)	N/A	3.0%	3.6%	0.5%	0.7%	6.4%	1.1%	2.8%	0.8%	0.0%	12.2%	4.9%	9.5%	4.4%	6.2%	30.8%
Proposed Bundle						Yes					Yes		Yes		Yes	

3.2 TERRACE

 Table 6.
 Energy Study Results – Terrace Office

For the office building in Terrace, the in-floor radiant heating/cooling system with variable speed pumps, improved window performance, and high efficiency boilers would be able to reduce 30.8% of energy consumption relative to ASHRAE 90.1 – 2004. In addition, since the baseline building has 50% efficiency heat recovery, the ECM9 (60% efficiency heat recovery) will not be able to demonstrate any energy saving. It is also recommended to consider other significant energy-saving strategies such as ECM11 (Demand control ventilation) and ECM13 (Low-flow plumbing fixtures) as well. The recommended energy-saving strategies for the office building in Terrace are different from the ones in Burnaby due to the change of climatic conditions.

	Baseline															Proposed
Hotel	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	ECM13	ECM14	Bundle
Space Heating (GJ)	2,088	1,883	1,841	2,059	2,051	1,736	2,121	2,170	2,187	1,557	2,366	1,951	2,307	2,088	1,812	1,812
Space Cooling (GJ)	455	453	453	456	457	463	448	436	447	465	407	419	424	455	455	455
Fans & Pumps (GJ)	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,435	718	1,244	834	1,329	1,329	1,329
Water Heating (GJ)	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	2,886	876	2,456	634
Interior Lighting (GJ)	926	926	926	926	926	926	834	694	764	926	926	926	926	926	926	926
Receptacle and Process Loads (GJ)	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
Total Regulated Energy (GJ)	7,684	7,477	7,435	7,656	7,648	7,340	7,617	7,515	7,613	7,269	7,302	7,426	7,377	5,674	6,979	5,157
Total Energy Consumption (GJ)	7,896	7,689	7,647	7,869	7,861	7,552	7,829	7,728	7,825	7,481	7,515	7,638	7,589	5,886	7,191	5,369
Energy Saving (GJ)	N/A	207	249	28	35	344	67	168	71	415	381	258	307	2,010	705	2,527
Energy Saving (%)	N/A	2.6%	3.2%	0.3%	0.4%	4.4%	0.8%	2.1%	0.9%	5.3%	4.8%	3.3%	3.9%	25.5%	8.9%	32.0%
Proposed Bundle														Yes	Yes	

Table 7.	Energy Study Results – Terrace Hotel
----------	--------------------------------------

For the hotel in Terrace, the hot water heating energy is a significant percentage and therefore the first step to achieve 30% energy reduction over ASHRAE 90.1 – 2004 is to reduce hot water heating energy. Any other energy-saving strategies without changing HVAC system such as ECM5 (Window U = 0.40, SHGC = 0.38), ECM12 (Variable speed pumps), and ECM 14 (High efficiency condensing boilers with 94% efficiency for space heating and domestic hot water heating), will be the design strategies to achieve 30% energy reduction. The energy results are the same as the hotel building in Burnaby.

	Baseline													Proposed
MURB	Building	ECM1	ECM2	ECM3	ECM4	ECM5	ECM6	ECM7	ECM8	ECM9	ECM10	ECM11	ECM12	Bundle
Space Heating (GJ)	1,157	1,109	1,085	1,134	1,127	886	1,197	1,261	1,014	1,351	1,479	1,157	1,157	919
Space Cooling (GJ)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fans & Pumps (GJ)	38	38	38	38	38	38	38	38	426	287	111	38	38	38
Water Heating (GJ)	537	537	537	537	537	537	537	537	537	537	537	164	457	164
Interior Lighting (GJ)	276	276	276	276	276	276	191	63	276	276	276	276	276	191
Receptacle and Process Loads (GJ)	172	172	172	172	172	172	172	172	172	172	172	172	172	172
Total Regulated Energy (GJ)	2,007	1,959	1,936	1,984	1,978	1,736	1,963	1,898	2,253	2,450	2,403	1,635	1,927	1,313
Total Energy Consumption (GJ)	2,179	2,131	2,108	2,157	2,150	1,909	2,135	2,071	2,425	2,623	2,575	1,807	2,099	1,485
Energy Saving (GJ)	N/A	48	71	23	29	271	44	109	-246	-443	-396	372	80	694
Energy Saving (%)	N/A	2.2%	3.3%	1.0%	1.3%	12.4%	2.0%	5.0%	-11.3%	-20.3%	-18.2%	17.1%	3.7%	31.9%
Proposed Bundle						Yes	Yes					Yes		

Table 9.	Energy Study Results – Terrace MURB
----------	-------------------------------------

Due to the change of climatic conditions, space heating energy in Terrace is required more than in Burnaby. Therefore, for the MURB in Terrace, in addition to ECM5 (Window U = 0.40, SHGC = 0.38) and ECM 11 (Low-flow plumbing fixtures), one more ECM was required to achieve 30% energy reduction over ASHRAE 90.1 – 2005, and ECM6 (10% lighting power density reduction over ASHRAE 90.1 – 2004) was recommended. Overall, the recommended ECM5, ECM6, and ECM11, would be able to achieve 31.9% energy reduction.

For the MURB, heat recovery ventilator (ECM8) reduces space heating energy through make-up air unit but it will increase fan energy as well. Overall, heat recovery ventilator in the MURB does not reduce energy consumption over the baseline building. In addition, in-floor radiant heating (ECM9 and ECM10) consumes more energy than the baseline building mostly because in-floor radiant heating system requires hydronic pumps but the baseline building with electric baseboard heating does not, and secondly the efficiency of electric heating is 100% while the efficiency of in-floor radiant heating with gas-fired boilers is 80%.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the above analysis, the following energy-saving strategies are recommended in order to achieve 30% energy reduction over ASHRAE 90.1 – 2004:

	Burnaby	Terrace
Office	In-floor radiant heating and cooling, demand control ventilation, variable speed pumps, and low-flow plumbing fixtures (ECM10, ECM11, ECM12, and ECM13)	Window U = 0.4, SHGC = 0.38, in-floor radiant heating and cooling, variable speed pumps, and high efficiency boilers with 94% efficiency (minimum) for space heating and hot water heating (ECM5, ECM10, ECM12, and ECM14)
Hotel	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating (ECM13 and ECM14)	Low-flow plumbing fixtures and high efficiency condensing boilers with 94% efficiency (minimum) for space heating and domestic hot water heating (ECM13 and ECM14)
MURB	Window U = 0.4, SHGC = 0.5, and low-flow plumbing fixtures (ECM5 and ECM11)	Window U = 0.4, SHGC = 0.5, 40% CFLs (or 31% Lighting Power Density Reduction over ASHRAE 90.1 – 2004), and low- flow plumbing fixtures (ECM5, ECM6, and ECM11)

Table 10.	Proposed Energy-Saving Strategies
-----------	-----------------------------------

The energy study was based on a "box-type" building with no detailed architectural/mechanical/electrical design, and the results of this study may vary for specific individual buildings. This energy study report should be used as a reference for guidance in energy-saving designs against ASHRAE 90.1 – 2004. We recommend further cost analysis and payback calculations for the selected energy-saving strategies. We also recommend pursuing passive design strategies that give real world energy savings, but are not necessarily accounted for in the energy modelling, such as building orientation, reducing the window to wall ratio, and external shading, etc.

Appendix A: Baseline Building Parameters

Office Building

	Project Baseline
Exterior Surfaces	
Wall Overall R-Value (IP Unit)	R8.1 (Mass Building: U=0.123)
Roof Overall R-Value (IP Unit)	R15.9 (Insulation Entirely Above Deck: U=0.063)
Glazing	
Glazing Percent	50%
Window U-Value (IP Unit)	0.46
Solar Heat Gain Coefficient	0.26
Space Conditions	
Lighting	1.0 W/ft ² or 10.76 W/m ²
Equipment Density	0.7 W/ft ² or 7.5 W/m ²
Lighting Controls	N/A
HVAC Systems Type	
Air handling unit	Hot Water Heating and Cooling with Economizer
Space Heating	VAV plus Hot Water Reheat
Principle heating Fuel Type	Natural Gas
Cooling Source	Chilled Water
Fan System	
Make-up Air Unit	N/A
Fan Power	1.1 hp/1000 CFM
Outside Air	18 CFM/Person or 8.5 L/s/Person
Occupant Density	25 m ² /person
Heat Reclaim	50% Efficiency
HVAC Controls	
Economizer	Differential Enthalpy
Central Plant	
Central Heating System	Natural Gas Boiler
Central Heating Efficiency (AFUE)	80.00%
Central Cooling System	Chiller - Centrifugal
Central Cooling Efficiency	COPstd=5.0;IPLVstd=5.25
Air Cooled - Fan Power	176,000 BTUH/Horsepower
Pumps	Head: 150 feet
Domestic Hot Water	
Heating Efficiency (AFUE)	80.00%
	Shower Heads: 0.16 L/s or 2.5 GPM; Peak Load Percentage: 25%
Plumbing Fixtures - Flow Rates	Faucets: 0.14 L/s or 2.2 GPM; Peak Load Percentage: 75%
Operating Conditions	
Indoor Design Temperatures	Winter: 21.1°C; Summer: 23.3°C
Operating Schedules	As per EE4 Default
Building Floor Area (m ²)	9,000

Hotel

	Project Baseline
Exterior Surfaces	
Wall Overall R-Value (IP Unit)	R8.1 (Mass Building: U=0.123)
Roof Overall R-Value (IP Unit)	R15.9 (Insulation Entirely Above Deck: U=0.063)
Glazing	
Glazing Percent	40%
Window U-Value (IP Unit)	0.57
Solar Heat Gain Coefficient	0.39
Space Conditions	
Lighting	1.0 W/ft ² or 10.76 W/m ²
Equipment Density	0.23 W/ft ² or 2.5 W/m ²
Lighting Controls	N/A
HVAC Systems Type	
Air handling unit	N/A
Space Heating	Fan coil
Principle heating Fuel Type	Natural Gas
Cooling Source	Chilled Water
Fan System	
Make-up Air Unit	Supply Air Temperature = 18°C with Heating and Cooling Coils
Fan Power	1.2 hp/1000 CFM
Outside Air	11.65 CFM/Person or 5.5 L/s/Person
Occupant Density	25 m ² /person
Heat Reclaim	N/A
HVAC Controls	
Economizer	Differential Enthalpy
Central Plant	
Central Heating System	Natural Gas Boiler
Central Heating Efficiency (AFUE)	80.00%
Central Cooling System	Chiller - Centrifugal
Central Cooling Efficiency	COPstd=5.0;IPLVstd=5.25
Air Cooled - Fan Power	176,000 BTUH/Horsepower
Pumps	Head: 150 feet
Domestic Hot Water	
Heating Efficiency (AFUE)	80.00%
	Shower Heads: 0.16 L/s or 2.5 GPM; Peak Load Percentage: 25%
Plumbing Fixtures - Flow Rates	Faucets: 0.14 L/s or 2.2 GPM; Peak Load Percentage: 75%
Operating Conditions	
Indoor Design Temperatures	Winter: 21.1°C; Summer: 23.3°C
Operating Schedules	As per EE4 Default
Building Floor Area (m ²)	8,000
Assumptions:	

Assumptions:

1. It is assumed that the fan power of fan coils is calculated with 0.7 Watt/L/s or 0.33 Watt/CFM.

MURB

	Project Baseline
Exterior Surfaces	r toject basenne
Wall Overall R-Value (IP Unit)	R11.1 (Mass Building: U=0.09)
Roof Overall R-Value (IP Unit)	R15.9 (Insulation Entirely Above Deck: U=0.063)
Glazing	
Glazing Percent	45%
Window U-Value (IP Unit)	0.46
Solar Heat Gain Coefficient	0.26
Space Conditions	
Lighting	0.7 W/ft ² or 7.5 W/m ²
Equipment Density	0.23 W/ft ² or 2.5 W/m ²
Lighting Controls	N/A
HVAC Systems Type	
Air handling unit	N/A
Space Heating	Electric Baseboard
Principle heating Fuel Type	Electric
Cooling Source	N/A
Fan System	
Make-up Air Unit	Supply Air Temperature = 18° C with gas heating only
Fan Power	1.2 hp/1000 CFM
Outside Air	16 CFM/person or 7.5 L/s/person
Occupant Density	60 m ² /person
Heat Reclaim	N/A
HVAC Controls	
Economizer	N/A
Central Plant	
Central Heating System	N/A
Central Heating Efficiency (AFUE)	N/A
Central Cooling System	N/A
Central Cooling Efficiency	N/A
Air Cooled - Fan Power	N/A
Pumps	N/A
Domestic Hot Water	
Heating Efficiency (AFUE)	80.00%
	Shower Heads: 0.16 L/s or 2.5 GPM; Peak Load Percentage: 25%
Plumbing Fixtures - Flow Rates	Faucets: 0.14 L/s or 2.2 GPM; Peak Load Percentage: 75%
Operating Conditions	
Indoor Design Temperatures	Winter: 21.1°C; Summer: 23.3°C
Operating Schedules	As per EE4 Default
Building Floor Area (m ²)	5,000