The Future of Hydrogen & RNG in Canada

Part 3: Technology & Market Readiness of Hydrogen

June 16, 2021
Opening remarks

Simon Dyer
Deputy Executive Director
Pembina Institute
Leading Canada’s transition to clean energy

The Pembina Institute is a non-profit think-tank that advances a prosperous clean energy future for Canada through credible policy solutions.
Presenting partner

FORTIS BC™
Energy at work

Supporting partners

real estate foundation
sitka foundation
North Family Foundation
Moderator

Tahra Jutt
Director, Clean Economy (B.C.)
Pembina Institute
Dr. Simon Bennett
Technology & Investment Analyst, Supply and Investment Outlooks Division
International Energy Agency
Hydrogen prospects

Pembina Hydrogen Webinar, 16 June 2021

Simon Bennett, International Energy Agency
Today, hydrogen use is mostly for refineries and heavy industry, and the associated CO₂ emissions are large. The future opportunity lies in a much wider range of sectors, but it must all be low-carbon to meet climate goals.
Why hydrogen?

• It produces no CO₂ when used

• It is a leading solution for several critical and interrelated challenges
 1. How to reach very high levels of variable renewable electricity through long duration storage and flexible power generation
 2. How to replace coal and gas in refining, steel, chemical production and heat cement plants
 3. How to avoid the costs and challenges of electrifying nearly all land transport
 4. How to maintain the benefits of market-based trade in energy, to balance long-term and short-term regional imbalances
 5. How to allow air transport to continue in a net-zero world without very high levels of carbon removal and bioenergy
 6. How to sidestep the challenges of full end-use electrification (including expanding the power grid to meet peak heat demand, decommissioning gaseous fuel infrastructure and switching all customers to electrical equipment).

Why not hydrogen? Efficiency losses, parallel infrastructure, huge investment needs, low capital efficiency, complicates the electrification narrative, competes with lifestyle changes
So where are we today?

- Momentum is unprecedented. If this is just another hype cycle, it’s a very big one!
- In the last few years, 12 countries plus the EU have published hydrogen strategies. 18 are under development
- Hydrogen companies have raised around $8 billion in equity since 2019
- Record levels of project development and record electrolyser sizes commissioned
- Electrolyser manufacturing capacity is rising from around 3 GW to around 9 GW
- New CCUS projects for hydrogen announced
- Costs of low-carbon hydrogen remain high compared to natural gas (1.5-7x), mainly due to input costs
Where next?

• IEA first annual Global Hydrogen Review – September 2021

• High-level shopping list:

1. Policies and projects that create dependable and bankable demand for low-carbon hydrogen equipment (electrolysers, storage, CO₂ storage, refuelling stations)

 Existing hydrogen demand is a good place to start, especially if new infrastructure and value chain contracting can be minimised

2. Technology neutral certification for low-carbon gases, ideally with international harmonisation

3. Long-term strategies for existing gas infrastructure and heating for buildings

4. Test multiple technology and regulatory configurations globally
Speaker

Dr. Jeff Goldmeer
Emergent Technology Director - Decarbonization
GE Gas Power
Decarbonizing our energy ecosystem with gas turbines

The Future of Hydrogen in Canada, Market Opportunities & Tech Readiness

Dr. Jeffrey Goldmeer
Emergent Technologies Director – Decarbonization

© 2021, General Electric Company. All rights reserved.
Energy Landscape Today & Tomorrow

Wind & solar grow fastest over next decade driven by cost competitiveness, technology and scale.

Gas will play a vital but changing role, providing flexible, dispatchable, affordable, reliable and lower CO₂ power.

Storage and hybrid solutions emerge, enabling baseload dispatchability of renewables.

Nuclear remains a key source of zero-carbon generation with small modular reactors expected to bring costs down.

Grid will play a critical role in enabling a diversified energy mix.

Digital technologies are the enablers tying it all together, orchestrating the world’s energy through software.
Decarbonizing gas power* ... a range of options

Use a zero or carbon neutral fuel
- Hydrogen (blue, green, pink)
- Synthetic methane
- Renewable methane
- Biofuels
- Ammonia

Remove carbon from the plant exhaust
- Carbon capture (liquid solvents)
- Carbon capture (solid sorbents)
- Oxy-fuel cycles

Gas turbines offer multiple options to achieve lower or zero carbon emissions

*Decarbonization as used herein is intended to mean the reduction of carbon emissions on a kilogram per megawatt hour basis | Source: IEA WEO 2020
Decades of experience with hydrogen and similar low BTU fuels

More than 75 gas turbines with more than 6 million operating hours
Use of hydrogen as a gas turbine fuel requires system changes

Fuel System
- Methane (CH$_4$): 912 lb/ft3
- Hydrogen (H$_2$): 275 lb/ft3

Combustion System
- Methane (CH$_4$): ~30–40 cm/sec
- Hydrogen (H$_2$): ~200–300 cm/sec

Emissions Aftertreatment
- Methane (CH$_4$): ~3,565 °F
- Hydrogen (H$_2$): ~4,000 °F

To deliver the same energy content, hydrogen requires 3X more volume flow.

Hydrogen flames may increase risk of damage to combustion hardware.

Operating on hydrogen may increase NO$_x$ emissions.

Operating a gas turbine on blends of hydrogen or on 100% hydrogen may require changes to key power plant systems, but this has been successfully demonstrated.
Commercial projects using hydrogen

Existing units are capable of operating on H₂ blends

- Four GE 7F gas turbines operated on a **blend of hydrogen** with natural gas
- Post blending, the fuel contained ~ 5% (by volume) hydrogen

High H₂ fuel commercial operation

- A 6B gas turbine has been operating for 20+ years on a high-hydrogen fuel
- The hydrogen composition has varied from **70%** and **95%** (by volume)

Utility-scale gas turbine operation on H₂

- Long Ridge Energy intends to begin blending hydrogen in their **new 7HA.02** gas turbine
- The owner’s plan is to transition the plant to 100% hydrogen in 10 years

Gas turbines (both new and installed units) can be configured to operate on hydrogen
Considerations to make hydrogen a competitive power gen fuel

ENABLING THE HYDROGEN ECONOMY

TODAY
70M tons of H$_2$ produced/year
> 99% is grey hydrogen

FUTURE
2050 forecast for green and blue hydrogen for power generation is ~3X more than all hydrogen produced today*

- Grey: Reforming natural gas
- Blue: Reforming natural gas + CCUS
- Green: Electrolysis of water with renewable power

Additional information available to continue the learning...

The Future of Energy ... building a world that works

Cutting Carbon: a conversation about our energy future

https://www.ge.com/gas-power/future-of-energy

For more information

Jeffrey.Goldmeer@ge.com
LinkedIn.com/in/JeffreyGoldmeer
twitter.com/JGoldmeer | #FuelGuy
Traci Kraus
Director, Government Relations
Cummins, Inc.
Cummins and Hydrogen

Traci Kraus

June, 2021
We serve many markets and applications

Heavy-duty Truck Medium-duty Truck Bus Construction Oil & Gas Fire & Emergency Power Generation

Electrolysis Marine Mining Light-duty Automotive & Recreational Vehicle Defense Agriculture Rail

This is not an exhaustive display of Cummins-powered markets. Please refer to cummins.com for the most updated product information.
Cummins is a global technology leader with a broad portfolio of power solutions
PLANET 2050 aspirational targets

COMMUNITIES ARE BETTER BECAUSE WE ARE THERE

2050 Targets
- Net positive impact in every community in which we operate
 = sum of environmental good > local environment footprint
- Near zero local environmental impact

DOING OUR PART TO ADDRESS CLIMATE CHANGE AND AIR EMISSIONS

2050 Targets
- Customer success powered by carbon neutral technologies that address air quality
- Carbon neutrality and near zero pollution in Cummins’ facilities and operations

USING NATURAL RESOURCES IN THE MOST SUSTAINABLE WAY

2050 Targets
- Nothing wasted
 - Design out waste in products and processes
 - Use materials again for next life
 - Reuse water and return clean to the community

NOTES
References to “facilities” relate to all consolidated operations and joint ventures subscribing to Cummins’ Enterprise Environmental Management System. Goals will be periodically assessed for progress and continued practicability
NEW POWER

Core Technologies

ELECTRIFIED POWER

Creating technologies and products for commercial battery electric vehicles

- On-highway: transit bus, school bus, medium-duty truck, walk-in van
- Off-highway: construction equipment, terminal tractor, material handling

FUEL CELLS

Creating and integrating components for hydrogen fuel cell electric vehicles and rail

- Electric vehicles: urban transit bus, commercial fleet, utility vehicle, electric lift truck
- Installation: freestanding electrical power plant

HYDROGEN GENERATION

Creating solutions for industrial and commercial hydrogen generation and MW-scale energy storage

- Industrial processes and fueling stations: PEM generator, alkaline hydrogen generator
- Critical and uninterruptible power supply, power-to-gas technology
CUMMINS NEW POWER APPLICATIONS

In the Field

BATTERY ELECTRIC
1. GILLIG battery electric transit bus
2. Blue Bird School Bus

FUEL CELLS
1. Scania Trucks
2. Alstom passenger train
3. Refuse Truck: Cummins fuel cells power FAUN electric refuse trucks on the road today in Europe

ELECTROLYZERS
1. Hybalance - 1.2-megawatt PEM electrolyzer
2. Cummins-Enbridge Power-to-Gas Facility
3. 5-megawatt PEM electrolyzer for Douglas Co Public Utilities District in Washington State (US)
4. HyLYZER 1000 – 20 MW PEM electrolyzer system
5. Uniper (power-to-gas)

HYDROGEN FUELING STATION
1. Hydrogen fueling station: Delivered electrolyzers for more than 50 hydrogen fueling stations
CUMMINS HYDROGEN TECHNOLOGY POWERS THE LARGEST PROTON EXCHANGE MEMBRANE (PEM) ELECTROLYZER IN OPERATION IN THE WORLD

- 20-megawatt PEM electrolyzer system to generate green hydrogen, the largest in operation in the world.
- The Cummins electrolyzer system is installed at the Air Liquide hydrogen production facility in Bécancour, Quebec.
- The Cummins PEM Electrolyzer can produce over 3,000 tons of hydrogen annually using clean hydropower.
Building Blocks of Hydrogen Policy

- Design and execute national strategies
- Reduce demand uncertainty
- Invest in infrastructure
- Continue research and development
- Accelerate deployment
- Implement common definitions, codes and standards
How governments can promote adoption

Infrastructure
- Hydrogen production
- Hydrogen fueling

Development
- Commercialize products
- Promote domestic manufacturing capability

Deployment
- Government support to purchase FCEVs
- Government support to decarbonize sectors

National Hydrogen Strategy
National Strategies
Poll
Questions
Part 4: Decarbonizing Heavy-Duty Vehicles in B.C.

June 30, 2021