

Energy Efficiency as a Resource

By: Chris Neme

Alberta Climate Summit Pembina Institute

September 28, 2017

Energy Futures Group Consulting

EE/RE Areas of Expertise

- Market Analysis
- Program Design
- Evaluation

Range of Clients

- Regulators
- Government Agencies
- Advocates
- Utilities

Clients in more than 25 states, 5 Canadian provinces, Europe & China.

Rationale for Efficiency Programs

Market barriers prevent many cost-effective investments

- Financial
- Awareness/info
- Risk
- Transaction costs

□ Large, untapped, potential that can be cost-effectively acquired

- Studies typically estimate ~10-20% of energy use...
- ...But those estimates are inherently very conservative
- Potential mostly constrained by policy not technology or economics

□ 30+ years experience in leading jurisdictions

- Typical program cost ~2-3 cents per kWh saved
- "Iow hanging fruit" keeps growing back

Estimates of Max Achievable Well Below Leading Jurisdictions' Actual Achievements

The Bar Keeps Getting Raised (annual savings as % of sales)

2006		2015	
1.2%:	CT, RI	≥2.7%:	MA, RI
≥1.0%:	3 states	≥1.0%:	16 states
≥0.5%:	12 states	≥0.5%:	34 states

6 states have EERS ≥2.0% savings in the future

Sources: ACEEE 2008 and 2016 State Energy Efficiency Scorecards

Source: Jim Lazar & Ken Colburn, "Recognizing the Full Value of Energy Efficiency", Regulatory Assistance Project, Sept. 2013

Efficiency as a Resource - Energy

Massachusetts Example

- Mandate to acquire "all cost-effective" efficiency
- Spending >6% of electric revenue on EE programs
- □ Will meet >20% of electric energy needs in 10 yrs

Efficiency as a Resource - Capacity

New England ISO Capacity Market Example

- Demand resources (DRs), including EE, compete w/supply
- 11 annual auctions to date
- DRs and EE have lowered market clearing prices

Efficiency as a Resource - Transmission

New England Example

- ISO began integrating long-term forecast of EE programs into transmission planning in 2012
- Removed >\$400 million in just Vermont/New Hampshire transmission projects from 10-year plan

Source: Chris Neme & Jim Grevatt (Energy Futures Group), *"Energy Efficiency as a T&D Resource"*, published by Northeast Energy Efficiency Partnerships, January 2015.

Efficiency as a Resource - Distribution

Con Ed (New York) Example

Passive Deferrals

- Substation level forecasts of impacts
- □ >\$1 billion reduction in 10-yr forecast

Active Deferrals

- \square >30 projects since 2003
- RFPs for DERs, but mostly EE won
- Many successful deferrals
- □ Also hedge vs. forecast uncertainty
 - bought time to determine some projects never needed

Source: Chris Neme & Jim Grevatt (Energy Futures Group), *"Energy Efficiency as a T&D Resource"*, published by Northeast Energy Efficiency Partnerships, January 2015.

Vermont's 2013 Estimated Value of Efficiency (\$/MWh)

Source: Jim Lazar & Ken Colburn, "Recognizing the Full Value of Energy Efficiency", Regulatory Assistance Project, Sept. 2013

12

Chris Neme Energy Futures Group cneme@energyfuturesgroup.com Phone: 802-482-5001 ext. 1 Cell: 802-363-6551

Multiple Benefits of Efficiency

Utility System Benefits

- □ Energy
- Generating Capacity
- T&D infrastructure
- □ Line losses
- Environmental Compliance
- RPS compliance
- Credit & Collection Costs
- Price Suppression
- Lower risk

Other Consumer/Societal

- Consumer Non-Energy Bens:
 - Comfort
 - Health & safety
 - Building durability
 - Water
 - O&M
 - Business productivity
 - Etc.
- Jobs/Economic Devt
- Environment
- Public Health
- Energy Security

Efficiency as a Resource – T&D

Passive Deferrals

Indirect, long-term impacts system-wide programs
Active Deferrals

 Geographically-targeted programs intentionally designed to defer specific T&D projects

Most EE Programs Provide Some Savings

Residential Lighting Savings Load Shape

Depth of Savings Matters

16

16

Hypothetical Distribution Substation w/100 MW Capacity

	Net Growth													
Level of Savings	Rate	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
No EE programs	3.0%	90	93	95	98	101	104	107	111	114	117	121	125	128
0.5% savings/year	2.5%	90	92	95	97	99	102	104	107	110	112	115	118	121
1.0% savings/year	2.0%	90	92	94	96	97	99	101	103	105	108	110	112	114
1.5% savings/year	1.5%	90	91	93	94	96	97	98	100	101	103	104	106	108
2.0% savings/year	1.0%	90	91	92	93	94	95	96	96	97	98	99	100	101

Season & Hour of T&D Peak Matter

				Annual Peak MW Savings by Program			am	
				Comme		Commercial	rcial	
		Peak	Peak	Residential	Residential	Lighting		
Substation	Customer Mix	Season	Hour	CFLs	A/C	Retrofits	Total	
А	Primarily	Summor	3:00 PM	0.4	0.9	0.7	2.0	
A	Business	Summer	5.00 PIVI					
D	Primarily	Cumping or	7:00 PM	0.4	1.4	0.3	2 1	
В	Residential	Summer					2.1	
	Primarily			1.0	0.0	0.4	1.4	
С	Residential	Winter	7:00 PM					
	w/Electric Heat							

Con Ed Distribution Deferral Cost-Effectiveness

18

18

NPV of Net Benefits of Con Ed's 2003-2010 Non-Wires Projects (millions \$)

Institutionalizing Non-Wires Alternatives

Screening Criteria for Triggering Detailed Assessments of NWAs

			Minimum	Maximum		
		Must Be	Years	Load	Minimum	
		Load	Before	Reduction	T&D Project	
		Related	Need	Required	Cost	Source
Tr	ansmission					
			1 to 3	15%		
	Vermont	Yes	4 to 5	20%	\$2.5 Million	Regulatory policy
			6 to 10	25%		
	N 4 - i	Yes			>69 kV or	Logiclativo standard
	Maine				>\$20 Million	Legislative standard
	Rhode Island	Yes	3	20%	\$1 Million	Regulatory policy
	Pacific Northwest (BPA)	Yes	5		\$3 Million	Internal planning criteria
Di	stribution					
	PG&E (California)	Yes	3	2 MW		Internal planning criteria
	Rhode Island	Yes	3	20%	\$1 Million	Regulatory policy
	Vermont	Yes		25%	\$0.3 Million	Regulatory policy