A 10kW Inverter for Variable Speed Wind Turbines

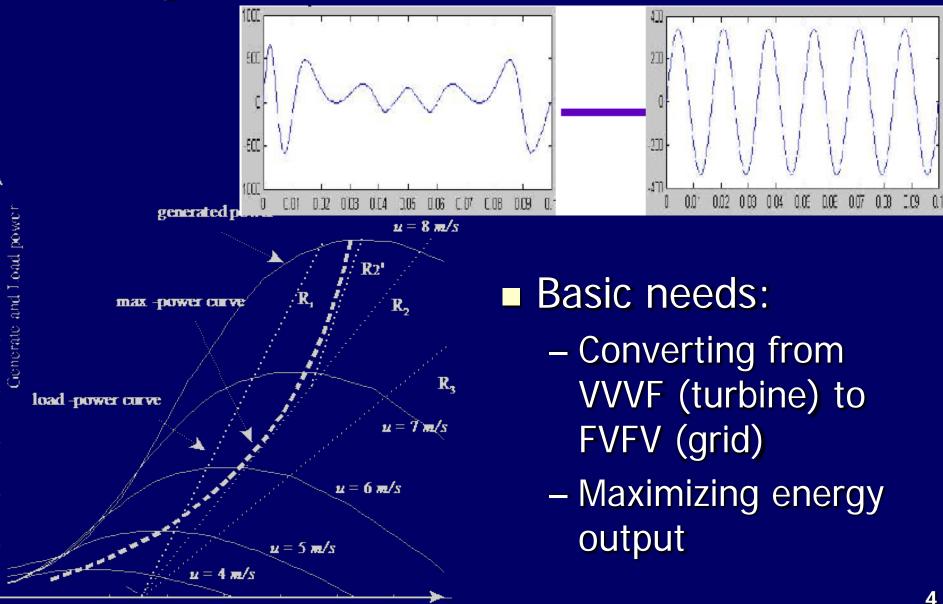
Liuchen Chang, University of New Brunswick (506) 447-3145, Lchang@unb.ca

Functions of an Inverter
Detailed Inverter Technologies
Commercial Operation Experience
Further Development
Conclusions

Small Wind Energy Industry

- Canadian Small wind industry (manufacturing, installation and operation) is about \$20M/year
- N.A. mall wind market has traditionally grown at about 25%/year, and is experiencing accelerated growth recently due to incentive programs
- Small wind industry has two distinct major markets: gridconnected systems, and wind-diesel systems
- Challenges of small wind industry include higher costs, compromised reliability and output as compared to large wind systems.
- Canada has tremendous opportunities to be a leader in small wind (incl. wind-diesel) market

B Sustainable Power Research Group


Options of Drive Trains for Small Wind Turbines

- Induction generators + gears → fixed speed operation, low cost
- <u>Direct drive permanent magnet synchronous</u> <u>generators (gearless)</u> → <u>variable speed</u> <u>operation</u> → 10-15% more energy output

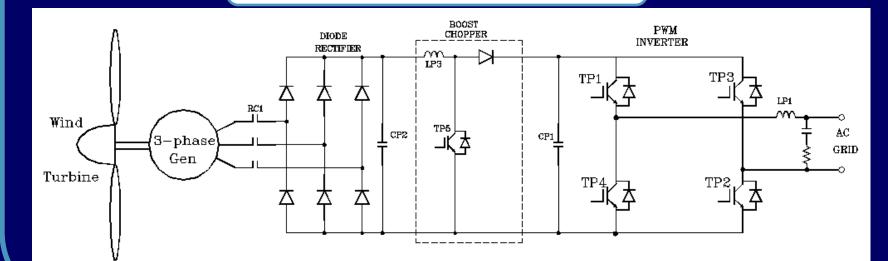
 Variable speed operation requires a power conversion unit (or inverter) for grid connection (utility grid or wind-diesel grid)

NB Sustainable Power Research Group

Why Inverters are Needed?

Inverter Functions: All Control Requirements AC-DC-AC conversion: high power quality output to grid (low total harmonic distortion) Maximum power point tracking: maximized power output at variable speeds Grid interconnection: compliance with requirements of standards for interconnecting with power systems Communication and system controls: remote monitoring, control, diagnosis and upgrade 5 Sustainable Power Research Group

Development of a Drive Train of a 10kW Wind Turbine Partnership with Ventera Energy Inc., MN (one of our partners) Variable speed, with a governor 10kW, single-phase, 240V/60Hz Permanent magnet synchronous generator <u>10kW IGBT inverter (integrated</u>) functions)

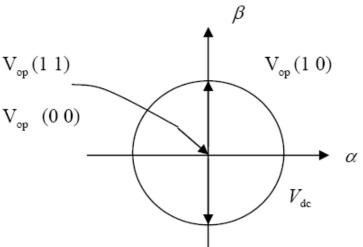

ÍNB Sustainable Power Research Group

10kW Inverter Design

Energy Management System

Communication & Control

DSP Low Level Control



ÚNB Sustainable Power Research Group

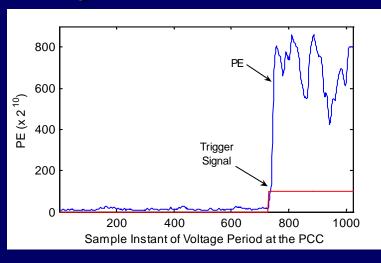
Predictive Current PWM

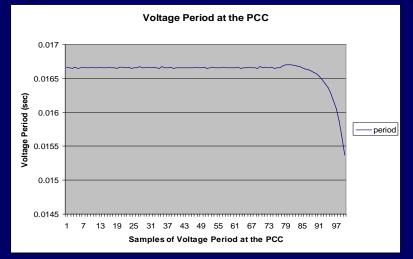
The conduction of IGBTs is determined by the desired output current and the real-time grid voltage waveforms
 Realtime computation

Mode	T ₁	T ₂	T ₃	T 4	D ₃	D ₄	V_{op}	Iload
1	ON	OFF	OFF	ON	OFF	OFF	V_{dc}	pos
2	ON	OFF	OFF	OFF	ON	OFF	0	pos
3	OFF	ON	ON	OFF	OFF	OFF	- V _{dc}	neg
4	OFF	ON	OFF	OFF	OFF	ON	0	neg

$$V_{\text{op_av}}[n] = 4V_{\text{grid}}[n-1] - 2V_{\text{grid}}[n-2] \qquad V_{\text{op}}^{(0.1)}$$
$$-V_{\text{op_av}}[n-1] + L\frac{I_{\text{ref}}[n+1] - I_{\text{load}}[n-1]}{T_{\text{period}}}$$

B Sustainable Power Research Group


Result: High Power Quality


Low current THD even when the grid voltage has significant harmonics (THD 2.6%)

	P _{op} (kW)	3.0	5.0	7.0	10.0
	$V_{\rm dc}$ (V)	360.0	402.0	401.0	401.0
$_{+}/$	THD (%)	2.9 %	1.9 %	1.4 %	0.9 %
	DC link volt output po THD Controllers	-			V _{dc} =600V P _{op} =10kW
1	Hysteresis Contro	oller 10.4	% 7.9%	8.0%	6.9%
	Traditional Predictive Contro	oller 4.19	% 3.3%	2.9%	2.7%
Stonned 78 03/12/99	Improved Predic Controller	ctive 4.4%	% 3.0%	1.9%	1.6%

NB Sustainable Power Research Group

Compliance with Interconnection Standards Grid voltage window (under- & over-V) Grid frequency window (under- & over-F) Anti-islanding (proportional power spectral density and accelerated phase-shift methods)

3 Sustainable Power Research Group

RD³: Research, Development, Demonstration & Deployment 44 inverters and generators have been produced 150 additional units are in production (2009) 11 turbines have been delivered in Saskatchewan ENERGY CORPORATION 25 additional units are back-ordered in Wind and Solar Inverter Saskatchewan Dual Peak Power Tracking 1472kWh/month in Model: 112-60 Saska. Mar.-May 09 Transferred to PV Sustainable Power Research Gro

On-going Work: Communication via Internet

Inverter Monitoring | LogoOut

Mod

Inverter:Null

S

F O G

G P C

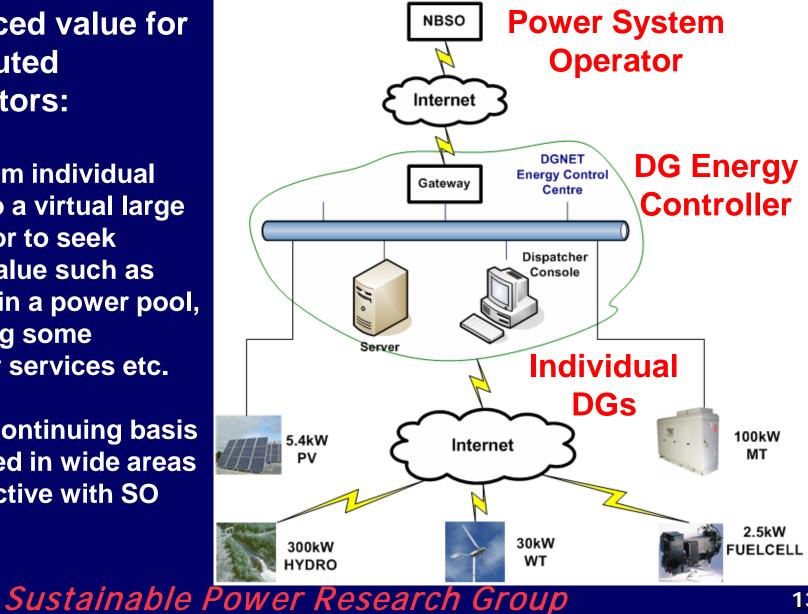
e&Display	Mode	D		
	Set	Run Stop		
	Display	Now Display:666666		
	Connected	131.202.9.1 dynamic		
	Set	00:0F:1F:76:A4:95		

Status of PV System

isplay

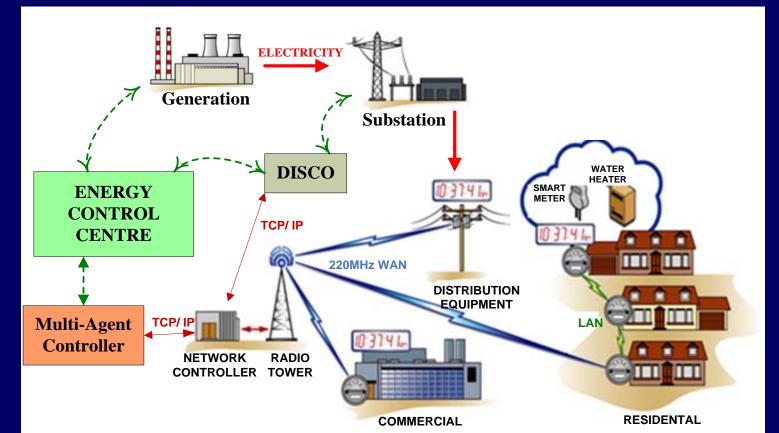
LCM	Display	Now Display:666666
P Address	Connected	131.202.9.1 dynamic
MAC Address	Set	00:0F:1F:76:A4:95
LED1	STATE	OFF
LED2	STATE	ON
LED3	STATE	ON
SPI	STATE	NORMAL.
SCI	STATE	NORMAL.
FAULT	STATE	SPI Fault
Output Power	k₩	0. 0000
Output Energy	kWhr	0. 0000
Grid Voltage	¥	0. 00
Grid Current	A	0. 00
PV Voltage	¥	11223344
PV Current	A	55667788
Current time	hh:mm:ss	T1:0:0:3:32
Accumulated Running Time	hh:mm:ss	T2:0:0:3:32

UNB Sustainable Power Research

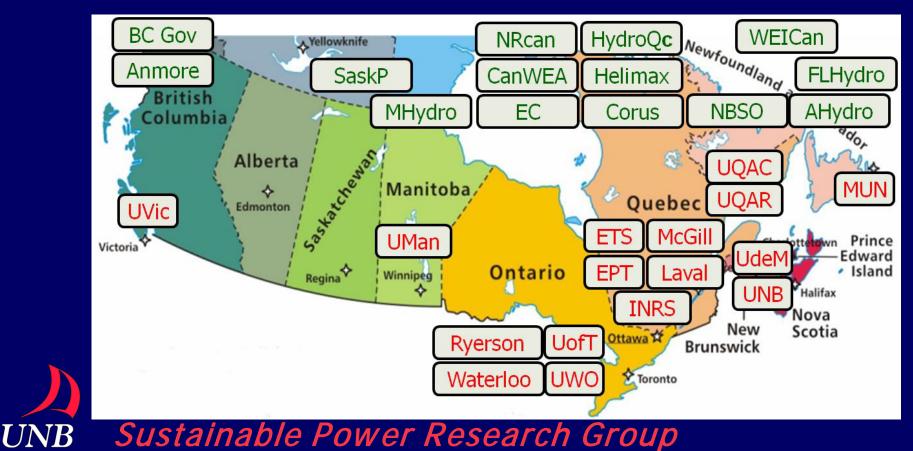

Dispatchable DG Networks

Enhanced value for distributed generators:

Transform individual DGs into a virtual large generator to seek added value such as bidding in a power pool, providing some ancillary services etc.


 \rightarrow On a continuing basis \rightarrow Located in wide areas \rightarrow Interactive with SO

UNB



Aggregated Load Control

- Aggregated domestic water heaters controlled by smart meters, and a central controller
- Benefits through peak load shaving, synchronous reserve and frequency regulation

Wind Energy Strategic Network (WESNet) 39 researchers of 16 universities: wind R&D \$6.3M in 5 years funded by partners & NSERC

Conclusions

- A single-phase IGBT inverter has been developed for variable speed wind turbines
- The inverter integrated multiple functions
- RD³ approach has led to strong partnerships with industry for commercialization of new technologies in the growing small wind market
- Aggregated energy systems have more values
- Complex technical systems necessitate multidisciplinary R&D partnerships

NB Sustainable Power Research Group