

Wind-Diesel Efficiency and Life Cycle Cost Analysis using Simulink[®]

2009 International Wind-Diesel Workshop Ottawa, Ontario, Canada June 1, 2009

Richard Wies, UAF Electrical and Computer Engineering ffrww@uaf.edu

A project funded by the US DOE National Energy Technology Lab (NETL) through the Arctic Energy Technology & Development Laboratory (AETDL)

Wind-Diesel Efficiency and Life Cycle Cost Analysis using Simulink[®]

- Needs, Challenges & Solutions??
- Objectives
- Wind-Diesel Co-Gen System
- Village Load Profiles
- HARPSim: Performance
 Analysis
- Conclusions

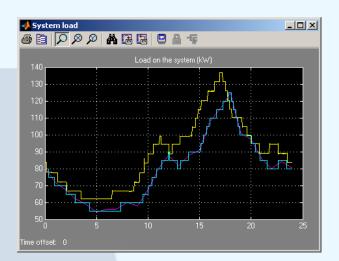
Needs, Challenges, & Solutions??

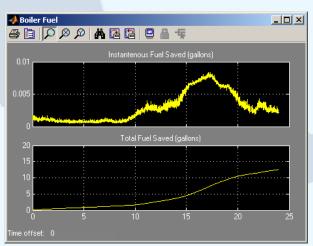
<u>Needs:</u>

The need for *energy efficient*, *reliable*, and *affordable* power for rural villages in Alaska.

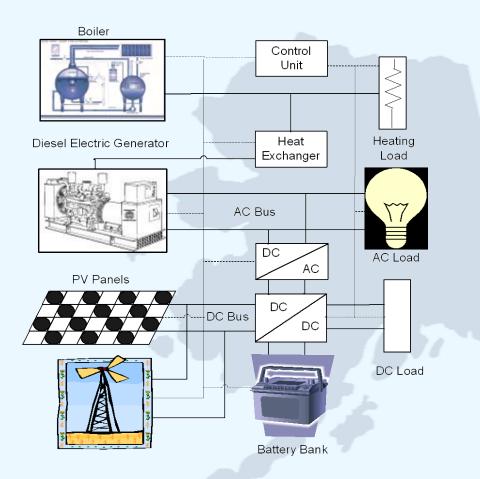
<u>Challenges:</u>

- Remoteness of sites (grid extensions not feasible)
- Rising oil prices & high transportation costs for fuels
- Maintenance & operational costs
- New environmental standards (carbon tax)
- "...Can't manage what you don't measure..."
- Solutions??:
 - Energy Management (Smart Grid)
 - Remote monitoring & control (SCADA)
 - Demand-side management
 - Renewable (Alternative) Energy Systems





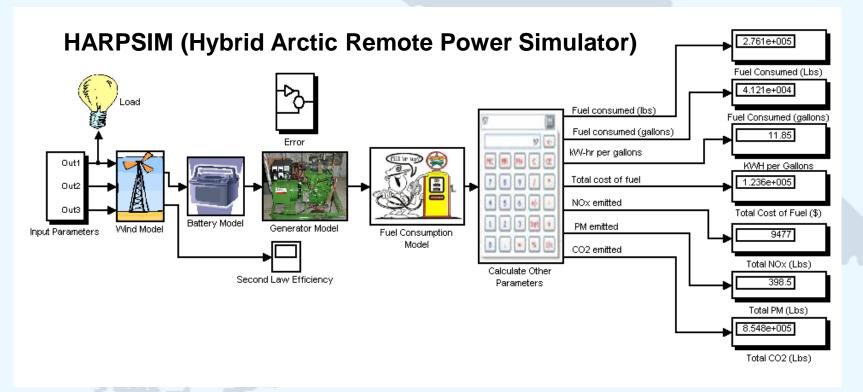
Objectives


- Survey of existing village power monitoring systems
- Data collection and management
- Village power analysis with integrated renewables:
 - load profiling
 - energy efficiency analysis (engine efficiency & fuel consumption)
 - economic analysis (life-cycle cost & payback)
 - environmental analysis (NO_X, PM₁₀, CO₂)

Wind-Diesel Co-Gen System

A ...

الم مودد ال


....

5

Village Power Analysis

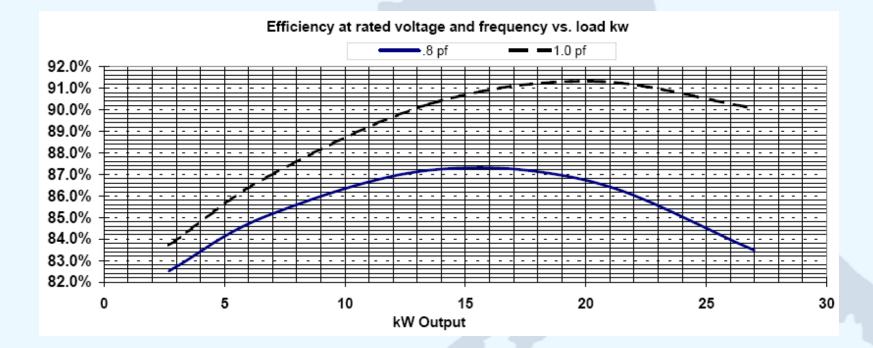
- Village Load Profiles
- Run Time, DEG Efficiency, Fuel Use, Fuel Cost & Emissions
- Fuel Savings and Cost of Energy (COE) Reduction w/ Introduction of Renewable Energy Sources

Wind Turbine Generator (WTG)

Power Curve and Look-up Table for 15/50 Atlantic Orient Corporation WTG.

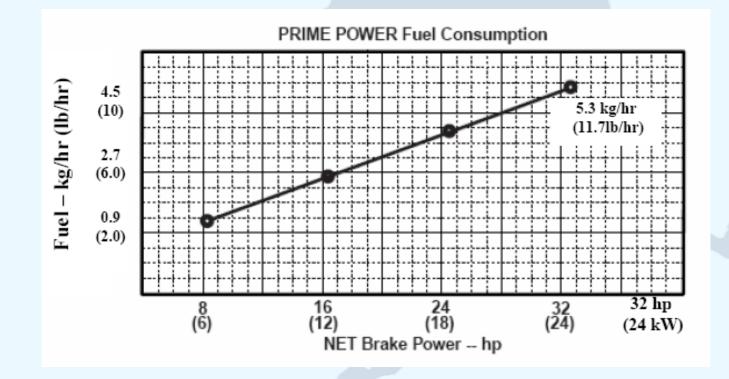
	Wind	Net		
Sr. No.	Meters/second	Miles/hour	output (kW)	
1	0	0	0	
2	5	11.18468	2	
3	10	22.37	40	
4	11.5	25.725	50	
5	13.5	30.1986	60	
6	15	33.554	63	
7	17	38.028	65	
8	19	42.5	63	
9	21	46.975	62	
10	22.5	50.331	61	

$$P_{max} = \frac{1}{2} \rho A V^3 \times (0.59)$$


0.00

DEG Efficiency (1)

• Efficiency for Electric Generator

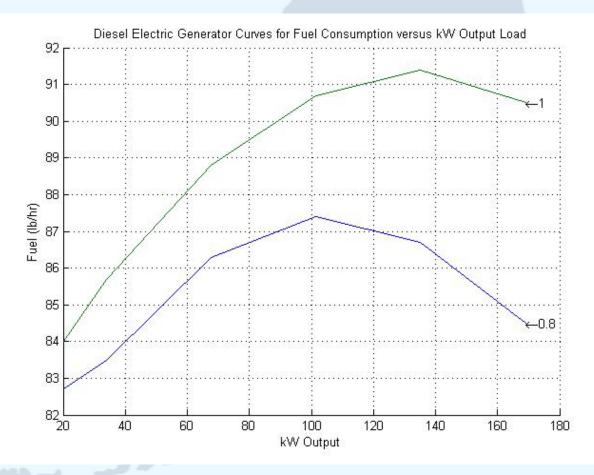

DEG Efficiency (2)

• Efficiency for Diesel Engine

....

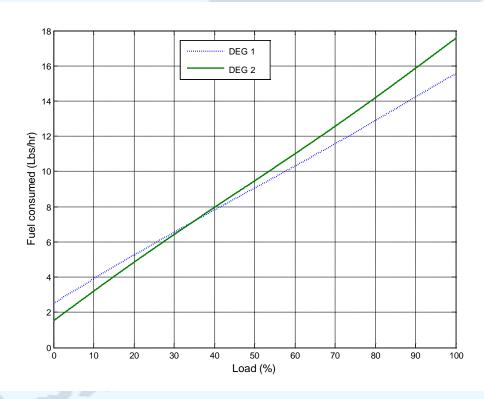
A.,

23.-



Load Effects on a DEG

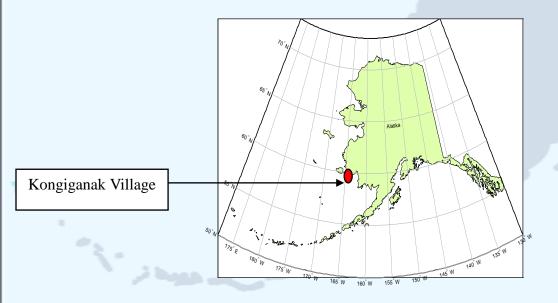
Efficiency of DEG Set


10

Effects of Load on Multiple DEG Efficiency

• <u>Load</u>: % Loading based on DEGs generation capacity has largest impact on fuel efficiency.

Emissions

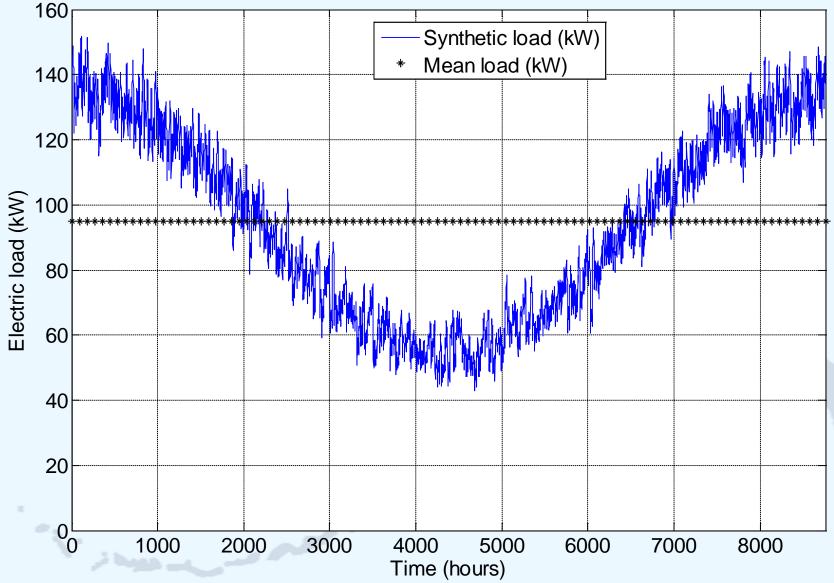

Light Diesel Combustion

 $C_nH_{1.8n} + (1.45n)(O_2 + 3.76N_2) = nCO_2 + 0.9nH_2O + (1.45N_2)(3.76N_2)$

Total pollutant in kg (lb) = $\frac{\text{pollutant}}{\text{kWh}} * \text{kWh}_{\text{Gen}}$

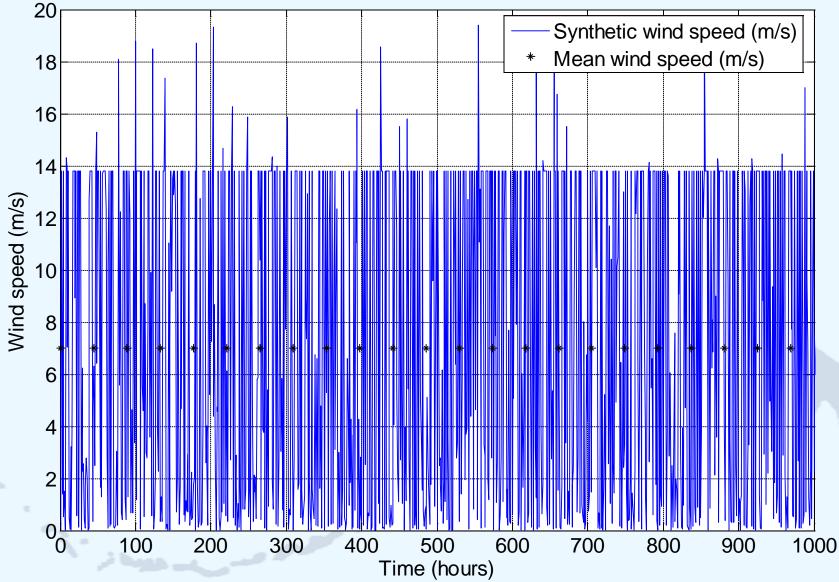
Performance Analysis (1): Kongiganak

- Location: western shore of Kuskokwim bay, 451 miles west of Anchorage (north latitude 59.96°, west longitude 162.89°).
- 90 housing units, 11 vacant, one school attended by 116 students (US 2000 Census).
- Marine climate: temp range 6°F 57°F.
- Average annual precipitation: 22 inches
- Average annual snowfall: 43 inches



- Current Power System/MET Data:
 - DEGS:
 - Diesel #1: 235 kW
 - Diesel #2: 190 kW
 - Diesel #3: 190 kW
 - Diesel #4: 140 kW
 - One DEG is sufficient to supply the load
 - Avg: 95 kW
 - Min: 45 kW
 - Max: 150 kW
 - Wind Speed: 7 m/s (15.6 mph)
- Test System:
 - 2 190kW DEGS (one as backup)
 - 100 kWh absolyte IIP battery bank
 - 1 or 2 65kW Integrity 15/50 WTGs
 - 100kVA bidirectional converter

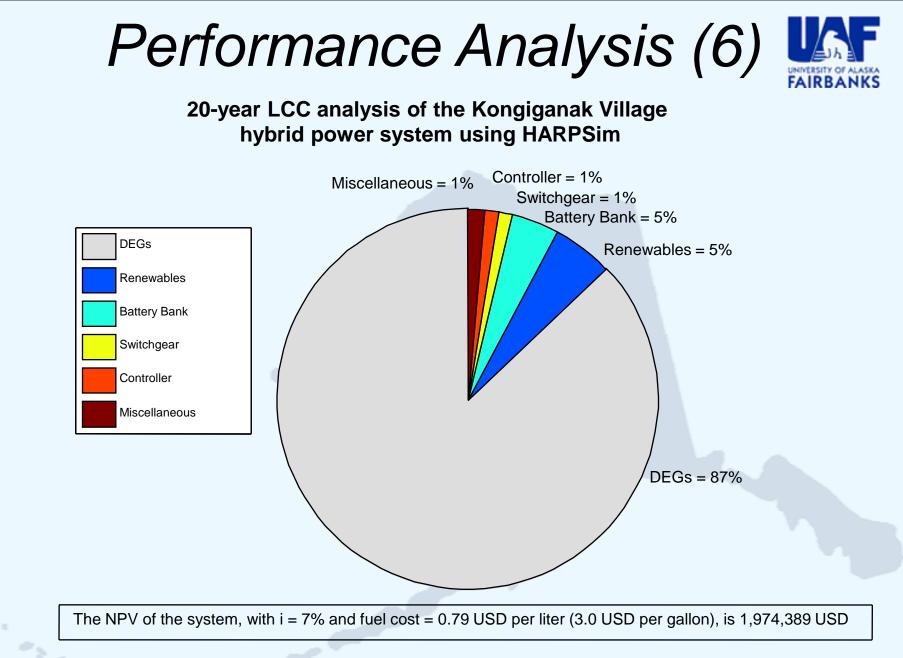
Performance Analysis (2)


Synthetic annual load profile for Kongiganak Village, Alaska

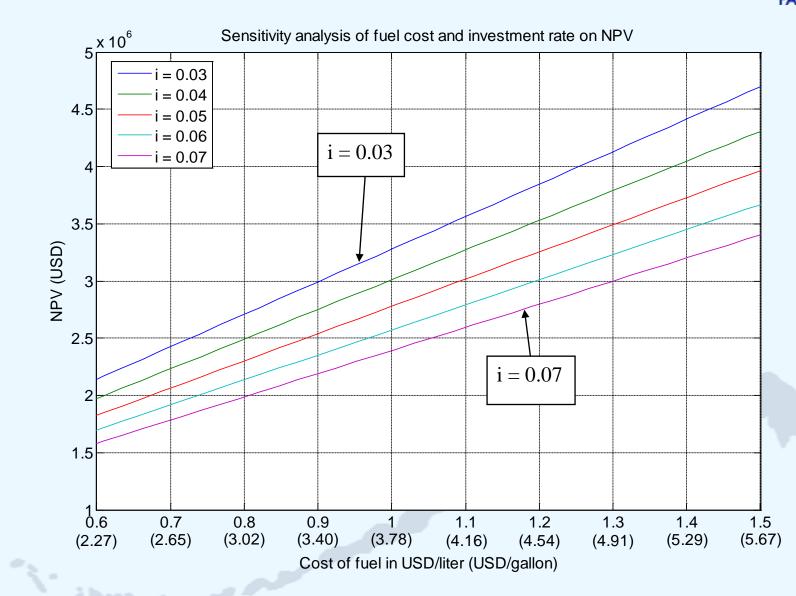
Performance Analysis (3)

Synthetic annual wind speed profile for Kongiganak Village, Alaska

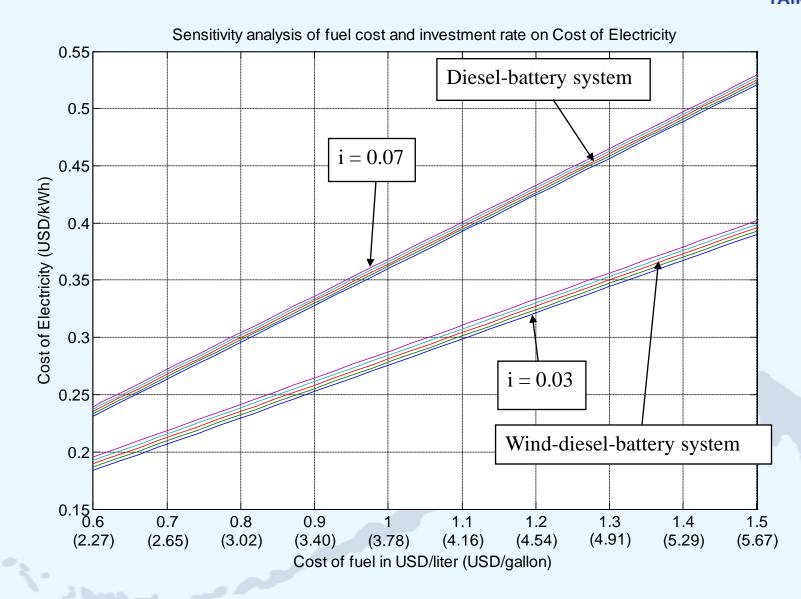
Performance Analysis (4)


Installation cost for different components for Kongiganak Village

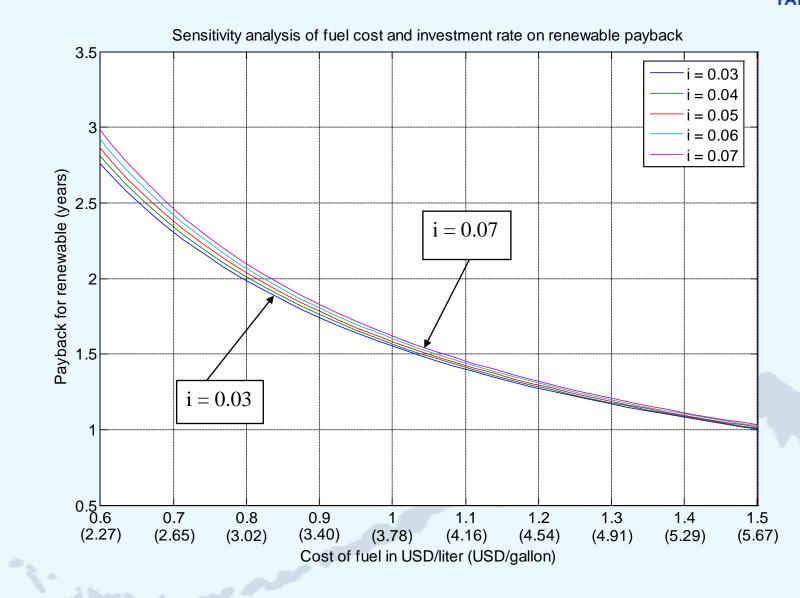
Item	Cost per unit (USD)	No of units	Diesel-only system (USD)	Diesel- battery system (USD)	Wind- diesel- battery system (USD)	2 wind- diesel- battery system (USD)
140 kW diesel generator	40,000	1	40,000	40,000	40,000	40,000
190 kW diesel generator	45,000	1	45,000	45,000	45,000	45,000
Switch gear to automate control of the system	16,000	1	16,000	18,000	20,000	30,000
Rectification/Inversion	18,000	1	0	18,000	18,000	28,000
New Absolyte IIP 6- 90A13 battery bank	2,143	16	0	34,288	34,288	68,576
AOC 15/50 wind turbine generator	55,000	1	0	0	55,000	110,000
Engineering		1	3,000	3,500	4,000	6,000
Commissioning, Installation, freight, travel, miscellaneous		1	13,000	14,000	18,000	30,000
		TOTAL	117,000	172,788	234,288	357,576


Performance Analysis: Comparison of Results (5)

Item	Diesel-battery	Wind-diesel- battery	2 wind-diesel-battery
	HARPSim	HARPSim	HARPSim
System cost (USD)	172,788	234,288	357,576
Engine efficiency (%)	29.3	29.3	29.3
kWh/liter (kWh/gallon) for engine	3.11 (11.75)	3.11 (11.75)	3.11 (11.75)
Fuel consumed in liters (gallons)	267,662 (70,810)	193,249 (51,124)	151,252 (39,961)
Total cost of fuel (USD @ \$3.00/gal)	212,429	153,373	119,883
Energy supplied			
(a) Diesel engine (kWh)	832,152	597,145	469,542
(b) WTG (kWh)	-	235,007	470,015
Energy supplied to load (kWh)	832,152	832,152	832,152
Operational life			
(a) Generator (years)	5	5	5
(b) Battery bank (years)	5.5	5.5	5.5
Net present value (USD) with $i = 7\%$ and $n = 20$ years	-	1,954,127	1,748,988
Cost of Electricity (USD/kWh)	0.301	0.237	0.22
Payback period for renewable (years)	-	1.07	1.56
Emissions			
(a) CO ₂ in metric tons (US tons)	660 (728)	477 (526)	367 (405)
(b) NOx in kg (lbs)	7,322 (16,143)	5,288 (11,657)	4,068 (9,112)
(c) PM ₁₀ in kg (lbs)	308 (679)	222 (490)	171 (383)



2.



2.1

20

2.

Conclusions

- WTG systems are economically feasible for arctic rural villages with suitable wind resources.
- The economic analysis shown here illustrates a decrease in the COE with WTGs integrated into the DEG system.
- Distributed or hybrid energy systems integrating renewable energy sources with DEGs can result in:
 - more economical and efficient generation of electrical energy and heat
 - increased lifetime and reliability of the DEGs

THE END OF THE BEGINNING

Book (Print on Demand): Hybrid Electric Power Systems: Modeling, Optimization, and Control, A. Agrawal, Richard Wies, & Ron Johnson, VDM Verlag, July 2007.

Contact email: ffrww@uaf.edu